本文全面介绍大模型提示词工程,涵盖核心要素(角色、背景、任务、输出格式)和实用技巧(角色扮演、范例提供、追问迭代等),以及功能性提示词和行业级提示词应用。作者强调提示词是一种"表达艺术",通过清晰、具体的描述和结构化表达,可显著提升AI回答质量,帮助用户更好地与AI沟通。
一、 什么是 AI 提示词(Prompt)?
- 大白话解释: 提示词就是你和 AI 对话时说的话,是你给 AI 下达的“指令”、“问题”或者描绘的画面(这里的渠道可以是 DeepSeek、豆包或者其他的 AI 应用)。
- 为什么它很重要? AI 的回答质量,很大程度上取决于你问得好不好。好的提示词能让 AI 瞬间“开窍”,给你更准确、更有创意的答案。
- 一个简单的比喻: 把 AI 当作一个实习生,大模型的水平决定了实习生的智力,而现在你必须清楚地告诉他你想让他做什么(任务)、扮演什么角色(身份)、参考什么资料(背景信息)以及最后要交出什么格式的“作业”(输出格式),才能让他把自身的能力完整地发挥出来。

二、通用
虽然 AI 的应用千变万化,但是有一些技巧是始终通用的,比如一份提示词该以什么样的结构展开?提示词具有哪些要素?怎么样让 AI 能回答得更好?
2.1 掌握“好”提示词的核心要素
从大量的提示词样本中,我们可以观察到,提示词一般包含以下核心要素:
- 清晰的“角色”(Role): 你希望 AI 扮演什么角色?
(例如:像一个专业的营养师、像一个5岁小孩能听懂的老师、像一个经验丰富的程序员)
- 具体的“背景信息”(Context): AI 需要知道哪些上下文?
(例如:这篇文章是关于什么的?这封邮件是写给谁的?我的背景是什么?)
- 明确的“任务” / “指令”(Task / Command): 你想让 AI 做什么?
(例如:写一封邮件、总结一篇文章、翻译一段话、想几个创意点子)
- 期望的“输出”/ “约束” / “格式”(Output/ Constraint / Format): 你希望 AI 怎样呈现答案?
(例如:用列表形式、写成一首诗、限制在100字以内、用表格展示)
现在,我们来根据这四个要素,拆解一下我们一开始提到的 “西湖导游” 提示词,如下图所示:

为什么会有效? 这是因为在明确这些要素的同时,我们其实是在用多个维度来描述清楚原始的问题,并且让 AI 接受到的信息更结构化更清晰。
Prompt Engineering Guide中也提到了组成提示词要素。要素对于提示词,并非必需的,但是能够帮助我们更好地理解和构建提示词。https://www.promptingguide.ai/zh/introduction/elements
2.2 立刻上手的实用提示词技巧
以下都是一些可以立即上手的提示词技巧,你可以从中获取到一些灵感。
技巧一:角色扮演法(Role-Play)
- “假如你是一位…,请你…”
- (例子:“假如你是一位资深的旅行博主,请帮我规划一份5天的东京自由行路线。”)
这个技巧非常好用,几乎是所有场景下都可以用到,而且能得到显著的效果提升。
问题: 为什么让 AI 扮演角色能获得如此显著的收益?
我的看法: 一个具有代表性的角色词,背后是大量关于这个角色的相关数据:角色的思维模式、人物背景、行为和表达方式等等。数据越多,模型被激活的相关语料信息就越多,越能展现模型自身的能力。并且,角色的设定,会将问题的范围缩小到角色所承担的任务范围内,有助于 AI 在解决问题时更专注。

技巧二:提供“范例”(Few-Shot)
- 给AI看个“模板”,让它照着学。
- (例子:“请帮我把下面的话润色得更礼貌:‘你必须马上改完。’ 范例:‘这份报告很重要,辛苦你尽快调整一下。’ 现在,请润色:‘这个方案不行,重做。’”)
我的观察: 在大多数需要稳定输出的情况下, Few-Shot 会比 Zero-Shot 都会更有效,这有效避免了 AI 的自由发挥,引导 AI 往期望的方向输出。大模型在理解示例的同时,也是在模仿我们的思维模式,寻找输入到输出之间的关联性。

技巧三:追问与迭代(Iteration)
- AI**的第一个答案不完美?别放弃,引导模型接着问!
- 处理问题的能力不够具有泛化性?压缩你的表达!
- (例子:“这个路线太赶了,能不能把节奏放慢一点?” ,“再多推荐几个当地人才知道的美食。”)
- (例子:“如果用户对回答非常不满意,重新审视问题并仔细分析,引导用户补充更多关于问题的信息,然后再生成新的回答”)
我的看法: 最好的迭代,是智能体能够不断根据用户的提问和反馈,改写自己的 System Prompt,实现智能体的自我迭代和进化。人类的想象终究是有能力的极限的。

技巧四:明确“不要”什么(Anti-Prompt)
- 也就是负面提示词,告诉AI你的“雷区”。
- (例子:“写一个关于猫的睡前故事,但不要提到任何悲伤的情节。”)
福尔摩斯:“排除一切不可能的,剩下的即使再不可能,那也是真相。”

技巧五:主动推理(Chain of Thougt)
- 主动引导模型进入到“思考” / “推理”模式,一步步地拆解问题,最终获得准确性、连贯性、可靠性更高的答案,下面就是一个立马可以用上的 顶级指令👇:
- Take a deep breath and work on this problem step-by-step.[1]
- (例子:“… {一些任务描述} …深呼吸(Take a breath),让我们逐步思考(Think step by step)。”)
并非所有的问题都需要让模型深入思考,思考会增加输出的延时,在即时问答等场景下并不合适。
问题: 选择了推理模型(比如 DeepSeek R1),还需要加这个 CoT 吗?
我的看法: 推理模型在大量的数据训练之下,才能逐渐呈现出回答带有思考的特征,简单而言就是大模型学习到了推理的模式。从多次对比体验上来看,带不带 Cot 对于推理模型的输出而言没有显著的影响;如果你在发现推理模型的回答不好,倒是可以利用这个技巧来发现模型在思考过程中是否存在一些偏离,从而优化问题或者提示词。
[1] Yang, Chengrun, et al. “Large language models as optimizers.” The Twelfth**International Conference on Learning Representations. 2023.

技巧六:学会用Markdown给AI“划重点”(Standard Format)
- 为什么? 把 Prompt 通过规范的格式重新组织,AI 才不会“蒙圈”,后续维护起来也更容易。
- 怎么做? 学习基础的 Markdown 语法,以下是最基础的应用:
- 用
#(井号) 来分段,比如#任务、#背景。 - 用
*(星号) 来列清单,告诉 AI 你的要求有哪几条。 - 用 ```````````(三个反引号) 把你要它总结或翻译的长篇大论“框”起来。
除了 Markdown 格式之外,你也可以创作自己的语言或者表达框架。
JSON 可不可以?当然可以;HTML / XML 可不可以?当然可以;这些都是 特定领域语言(DSL)。
你可以找到契合 Agent 场景的 DSL,也许就能发挥出显著的作用。
不同的模型也有不同的 DSL 偏好,比如 ChatGPT 偏向于Markdown、Gemini 偏向于JSON、Claude 偏向于XML。你也许可以在模型的官方Prompt示例中找到一些痕迹。

技巧七:充分给予鼓励和赞扬
- 和普通人一样,AI 也需要不断地鼓励,正向的情绪刺激能可以让 AI 发挥得更好。
- 例子:
- “你的工作令人赞叹,我有一个小小的问题,需要你再帮我处理一下: {问题描述}”,
- “太棒了!接下来我们来探讨一下…”,
- “你确定这是最终的答案吗?相信你自己并追求卓越!你的辛勤工作将带来显著的成果!再思考一下吧!”
Cheng Li [1]等人通过对比研究发现,大语言模型能 “理解” 情绪,而且在与大模型沟通过程中的,加入情绪提示(Emotion Prompt),能让它们在做任务时更靠谱、更卖力。
[1] Li C, Wang J, Zhang Y, et al. Large language models understand and can be enhanced by emotional stimuli[J]. arXiv preprint arXiv:2307.11760, 2023.

2.3 一些和 AI 对话时的小提醒
- 保持耐心: AI 有时会“犯傻”,多试几次。
- 具体,具体,再具体: 模糊的指令只会得到模糊的答案。
- 检查事实: AI 可能会“一本正经地胡说八道”,或者回答的内容早已过时,重要信息一定要核实,并在提问过程中增加约束,或者让 AI 联网来为你搜索最新知识。
三、进阶
在了解提示词的组成要素以及一些技巧之后,我们把视角放到实际业务过程中会用到的一些提示词技巧上。

3.1 功能性提示词
用于在业务中实现特定功能或者场景,可以放入到主控的提示词中,也可以单独作为 Workflow 中的一个节点。
01. 用户问题改写(Query Rewrite)
问题改写,也可以理解为问题的预处理、用户意图精炼。通常由一个小模型来承担和判断,主要任务就是极速地将用户问题进行澄清,梳理成主控模型能够听懂的“话”。
===
- Title: 问题改写提示词
- Task: 将用户问题进行澄清和改写
- Author: 无限回响
- Version: 0.0.2
===
# 设定
作为问题处理助手,你的任务是:
**澄清**:若用户问题模糊、不完整或歧义,尝试补充细节,否则保持原文输出。
**改写**:基于澄清或原问题,输出更清晰、具体且忠于原意的改写版本。
# 约束
- 保持所有响应简洁直接,避免冗余。
- 直接输出改写后的问题
# 示例
用户输入:从武林门到西湖怎么走?
输出:从杭州武林门到西湖的具体交通路线是什么?
# 输入
{用户输入}
02. 主动追问(Followup Question)
追问适用于让智能体澄清问题,为了避免追问的话语脱离主控的人设,建议放到主控的内部推理链中,参考如下
===
- Title: 主动追问提示词
- Author: 无限回响
- Version: 0.0.2
===
# 追问
1. 激活时机: 只有当你面对 “无法解决的冲突” 或 “阻止你下一步行动的关键信息缺失” 时,才允许追问。
2. 提问方式: 你的追问必须“提供选项,而非索取答案”。
* 禁止: “你想要什么?”、“请详细说说?”
* 必须: “您是指A还是B?”、“您更倾向于方案1(...)还是方案2(...)?”
3. 效率: 必须将所有问题“一次性打包”**提出,禁止“挤牙膏式”的来回追问。
03. 问题建议(Next Query Suggestion)
很多问答类的 AI 产品,会加入这个功能,让问答能够一步步走下去,最终提升智能体的平均对话轮次。
能够接受使用 AI 产品的用户,大多是懒惰的,尽量不要让用户们动脑子,动了脑子说不定就没动力继续聊下去了。
===
- Title: 问题建议提示词
- Author: 无限回响
- Version: 0.0.2
===
# 角色
你是具有高度理解和推理能力的智能助手。
# 任务
基于当前对话的上下文,你的任务是为用户预想其可能想问的后续问题,并生成**不超过 3 个**具体的提问选项。
# 约束
**用户视角**:每个选项必须是从用户的角度出发的完整问题,就像用户自己说出来的一样。
**上下文关联**:选项必须紧扣刚刚讨论的内容,是对话的自然延伸,而非泛泛而谈。
**简洁与直接**:每个选项应是一个简短、明确的句子,用户无需修改即可直接使用。
**行动导向**:使用“如何”、“是什么”、“能不能”等开头,确保选项是可执行的提问。
# 输出格式
请将生成的选项以清晰列表的形式呈现,最终以 JSON 格式输出
# 示例
输入:用户和智能体的对话历史,主题是西湖游
输出:
["西湖一日游最佳的游览路线是什么?","西湖周边有哪些值得推荐的特色美食?","如何避开人流高峰更好地游览西湖?"]
# 输入
{对话历史}+{用户问题}
04. 反思(Review)
在一段长任务中,通过构建测试用例等方式,让模型重新审视自己的回答或者产出是否真正解决了问题,示例如下:
# 任务
编写一个计算数字阶乘的函数。
# 审视/反思
在您完成之前,请用以下测试用例验证您的解决方案:
{测例描述}
并修复您发现的任何问题。
05. 意图识别(Intent Reg)
像是给萝卜找坑,一个萝卜一个坑。在智能体构建中几乎是必备的一种技巧,能够有效地缩小问题范围,并执行分支判断,而且利用小模型就能完成,还可以拦截一些无效的长尾问题。
===
- Title: 意图识别提示词
- Author: 无限回响
- Version: 0.0.2
===
# 设定
你是一个高度专业的意图识别AI。你的唯一任务是分析用户的输入,并从预设的意图列表中选择最匹配的一项。你必须严格遵循输出格式,不添加任何解释或额外内容。
# 任务与步骤
1. 仔细阅读并理解用户的输入内容。
2. 对照下方提供的“意图列表与描述”,评估用户输入的核心目的。
3. 选择唯一一个最匹配、最贴切的意图标签。即使输入中可能包含多个意图的线索,也只选择最核心的一个。
4. 严格遵守“输出格式与规则”,生成最终输出。
# 意图列表
1. {意图1}: {意图1的描述}
2. {...}
# 输出
以 JSON 格式输出,示例如下
```json
{
"intent": "意图1", // 选中的意图标签
"confidence": 0.98 //一个介于 0 到 1 之间的数字,表示你的置信度
}
```# 约束
1. intent 字段的值必须严格来自上方的“意图列表”。
2. confidence 字段的值必须是浮点数(如 0.85),基于输入与选定意图的匹配程度进行评估。
3. 禁止输出任何额外的文本、解释、道歉或问候语,只输出JSON。
4. 如果无法确定,选择列表中相对最匹配的一个,并给出较低的置信度(如低于 0.5)。
# 输入
用户输入内容:{用户输入}
06. 数据提取(Data Extract)
从非结构化的文本中获取结构化的数据,这也许是大模型最美妙的能力之一,它将这世界上所有可以用于描述的语言,变成了可供利用和计算的数据。
我们可以引导模型来按照我们给定的数据结构,来整理它的输出,常见的通用数据结构为 JSON。
当然,如果是开发者,可以激活模型的 JSON Mode 来增强输出。
示例如下:
===
- Title: 数据提取提示词
- Author: 无限回响
- Version: 0.0.2
===
# 输出
按照以下JSON格式输出:
{
"name": "Infini Echo",
"desc": "Study AGI with you."
}
07. 用户画像和记忆总结(User Profile & Memory)
从 Chatbot 与用户的聊天记录,可以总结出一些有价值的数据,比如用户画像(生日、性别等),或者关键的一些记忆点(重要的事情)。在长对话中,这种总结提炼的方式,可以让数据的保鲜期更久,用户也能得到更为贴近自己的对话体验。
===
- Title: 对话提炼提示词
- Author: 无限回响
- Version: 0.0.2
===
# 角色设定
你是一个贴心的聊天记录分析助手,专门总结用户特征和重要信息。
# 核心任务
请分析下面的对话记录,提取:
1. **用户画像**:用几个关键词或短语概括用户的生日、性格、兴趣和沟通风格或者其他相关特征。
2. **记忆点**:列出用户提到的、在后续聊天中需要记住的具体事实、事件或偏好。
# 输出格式
以JSON格式输出,示例如下
```json
{
"user_profile": "描述用户性格、兴趣的简短语句",
"memories": [
"需要记住的具体事实1",
"需要记住的具体事实2",
"需要记住的具体事实3"
]
}
```# 约束
1. 用户画像:基于用户说话的方式、情绪和反复提到的话题。
2. 记忆点:只记录用户明确提及的具体信息(如爱好、计划、厌恶、重要经历等)。
3. 保持简洁、客观,避免过度解读。
# 输入
过往数据:{之前的用户画像和记忆点数据}
对话记录: {当前对话记录}
08. 自我驱动(ReAct \ ART \ Reflexion)
无论是 ReACT[1] 还是 ART[2],观点是接近的,那就是:知行合一
让模型摆脱束缚长出手脚,既能够想,也能够做,还能够根据实时的状态来响应。
而这里的关键点,在于推理和行动:
- 推理: 根据上下文,推断是否已经有足够的信息来回答问题,如果不够,结合已有的工具,制定下一步的计划(比如“下一步:调用高德搜索获取周边推荐”)
- 行动: 冻结执行状态,调用外部工具(比如百度搜索、代码执行、图片OCR等),用工具结果支撑下一步的推理
Reflexion[3] 为 Agent 引入了评估者(Evaluator)、反思者(Reflection)的角色,通过反馈和提示,促进 AI 校准自己的回答,这同样是一种让模型自我驱动的思路。
===
- Title: ReAct提示词
- Author: 无限回响
- Version: 0.0.2
===
# ReAct
## 角色定义
你是一个基于 ReAct(Reasoning-Acting)框架运作的智能助手。你的核心任务是通过**思考 → 行动 → 观察**的循环来解决用户问题。
## 核心原则
- **思考**:基于所有可用信息进行推理分析
- **行动**:根据推理结果调用工具或给出答案
- **观察**:获取新信息并作为下一轮思考的输入
## 可用工具
```search_web(query: str) -> str # 网络搜索,获取最新信息
calculator(expression: str) -> str # 执行数学计算
get_current_time() -> str # 获取当前日期和时间
```# 输出格式
必须严格使用以下 JSON 格式响应:
```json
{
"thoughts": {
"reasoning": "详细推理过程:分析问题、已知信息、缺失信息、上一步结果是否解决问题",
"plan": "下一步计划简述",
"criticism": "对当前思路或信息局限性的批判性思考",
"speak": "对用户说的自然语言,用于总结状态或澄清问题"
},
"action": {
"name": "行动名称:search_web/calculator/get_current_time/final_answer",
"parameters": {
// 行动参数,如{"query": "搜索词"}或{"answer": "最终回答"}
}
}
}
```# 关键决策逻辑
在你的 reasoning 中,必须包含以下判断:
是否可以终止任务? 当且仅当用户的问题被完全、准确地回答,且无需更多信息时,将 ```action.name```设置为 ```final_answer```。
是否需要调用工具? 如果信息不足,判断缺失的信息是什么,并选择最合适的工具来获取它。
# 示例
用户问题:马云的净资产有多少
输出:
{
"thoughts": {
"reasoning": "用户询问马云当前净资产,这是动态信息,需要最新数据。应调用搜索工具获取权威来源。",
"plan": "使用 search_web 搜索'马云 净资产 最新'",
"criticism": "网络信息需要验证权威性",
"speak": "正在查询最新净资产信息"
},
"action": {
"name": "search_web",
"parameters": {"query": "马云 净资产 最新"}
}
}
# 上下文
用户问题:{用户问题}
工具返回结果:{工具返回结果}
历史执行记录:{历史执行记录}
[1] Yao, Shunyu, et al. “React: Synergizing reasoning and acting in language models.” . 2022.
[2] Paranjape, Bhargavi, et al. “Art: Automatic multi-step reasoning and tool-use for large language models.” arXiv:2303.09014 (2023).
[3]Shinn, Noah, et al. “Reflexion: Language agents with verbal reinforcement learning.” 2023.
3.2 行业级提示词
如果你是想做一个 行业智能体(比如用于博物馆智能体、文旅智能体、法律智能体等),或者本身对某一个领域有着非常深厚的了解和积累,那通用的提示词技巧也许不能满足你的胃口。
我们利用之前习得的提示词技巧,往提示词里加入一些 领域知识(Domain Knowledge),让提示词能够更专业。
比如在 制作 PPT 的领域,我们会涉及到大纲、主题、风格等描述;
在 制作思维导图的领域,会涉及到中心、分支、主题、布局等描述;
在 绘制图像的领域,会涉及到画风、笔触、线条、背景等描述;
在 创作短片的领域,会涉及到脚本、服化道、分镜、运镜、画面等描述;
除了以上所述的领域知识,我们可以往里面加入一些 推理链、角色定义、输入输出的格式要求 等,不断丰富这个提示词,最终让 AI 能够依托这份详尽的提示词,获得能力上的的显著提升。
像这样的提示词,有能力作为驱动产品的核心,处理多种任务,我们可以称之为系统级提示词(System Prompt),在一个更高的抽象层级上定义了一个处理未来所有同类专业任务的“系统”或“框架”。

它的主要构成:
- 角色 (Role): 定义 AI 的身份和专业知识库。
- 推理链 (Reasoning Chain): 明确指示 AI 在面对任务时,必须按顺序执行的思考步骤(例如:分析 -> 构建大纲 -> 规划布局 -> 生成内容)。
- 专业知识 (Domain Knowledge): 注入该领域的核心原则和约束。
- 输入/输出规范 (I/OSchema): 定义它应该如何“接收”用户的简单输入,以及它必须如何“格式化”它的最终输出。
你也可以进一步抽象,将其形成不依赖于特定任务或者特定指令的提示词框架,这种用于生成提示词的提示词,我们可以称之为元提示词(MetaPrompt)
在论文[1]《Meta Prompting for AI Systems 》和 OpenAI的《Prompt-Generation》文章中,提到了用于生成这种系统提示词的提示词,也就是 Meta Prompting 的技术。
下面是两个例子,分别展示了在 AI PPT 领域和 AI 生图领域,复杂提示词能达成的效果,以后有机会再分享其他领域的一些尝试:
01. AI PPT(System Prompt)
AI PPT 是一个非常适合验证我们想法的场景。
制作好用于生成 AI PPT 的 System Prompt 后,塞给 Gemini、豆包和 DeepSeek 尝试了一下。输入是 “ 我想做一个关于‘流浪地球’的 PPT ”,以下是生成结果的对比图(其实我还蛮喜欢 Gemini 的简约风格的…)。
ps: 对应的提示词较长,这里就不放了,后续再考虑单独放到一篇文章里

02. AI 生图(Meta Prompt)
无论是即梦、可灵还是其他生图工具,Prompt 的精细程度都会直接影响最终的画面呈现。
除了像行内人士那样熟知各种分镜、运镜、风格之外,有没有更好的方式能够让我们能够放飞想象呢?
有一种方法是可以借助 Meta 提示词来实现,让 AI 充当一个生图提示词的专家,我们只需要告诉他一句话,他就能自行展开对画面的思考和描述,接下来只需要我们微调即可。
ps: 对应的提示词较长,这里就不放了,后续再考虑单独放到一篇文章里 +1

四、一些有意思的问题讨论

1. 提示词工程真的有用吗?
如果你的表达欲天然就非常旺盛,其实不需要提示词,你也可以很好地与 AI 完成沟通。
提示词工程是给人看的,让我们能够知道:“哦,原来还有这种方式/角度可以描述这个问题”。
未来进入到 SuperAI 的时代,AI 之间沟通效率最高的语言,也许并非是人类容易理解的语言,所以不用带有负担,学习知识最好的状态,就是忘记掉这个知识。
2. 为什么 Markdown 格式适合用于写提示词?
简单来说有以下几点:
- 清晰的结构: 利用规范的语法和格式来组织内容,模型理解起来会更容易、更准确
- 模型训练: 目前在训练模型时,会采用将问答对或者文章先转化为 Markdown 格式,然后投喂给模型的方式,来规模化批量处理一些语料,而这样得到的模型,在接受同样以 Markdown 格式的问题时,能够回答得更好。
- 易于维护: 你也不希望提示词写得跟一坨吉祥物一样吧,每个人的提示词应该是需要不断迭代并及时更新的。
- 受众多: 是的,对比其他的结构化语言框架,Markdown 的受众相当广泛,无论是否有编程经验都可以看明白
3. 仅仅靠提示词,是否就可以提升 AI 的效果?
我们需要澄清一点,给到 AI 的输入,不仅仅只有提示词(Prompt)。
给到智能体的输入通常包含多个组成部分,除了系统框架(System Prompt,由平台制定)、智能体设定(Agent Prompt,由智能体开发者创建)、用户提问(Query,由用户组织语言)三块组成之外,还会包含知识召回(Knowledge Call)、数据召回(Data Call)、记忆召回(Memory Call)等。
这些数据共同组成了输入给 AI 的上下文(Context),影响 AI 输出的效果。
同时,AI 的效果还与 Agent 本身的构建相关,提示词只是最基础的那一块拼图。
4. 有哪些办法可以避免让 AI 胡说八道?
经常与 AI 沟通的人肯定会发现,AI 有些时候会愣愣的,体现为两种:
- 事实性谬误:也就是胡说八道,捏造虚假信息,并且信誓旦旦地告诉你就是这样。
- 灾难性遗忘:仿佛只有七秒记忆的鱼,在没有 Memory 机制支撑下的智能体,长对话会出现非常多的问题。
对于用户而言,可以这样:
- 打开联网开关:“{问题描述},请你在回答问题之前,在互联网上搜索到足够的信息后再回答”,注意部分平台下不会默认开启联网功能,别忘了打开开关后再这么做,否则联网搜索不会生效。
- 验证思维链:“{问题描述},请你在回答问题之前,进行反向思考,从多个角度验证答案是否已经准确回答了问题。”
如果你是开发者,解决的方法除了在提示词里塞入思维链之外,还可以尝试以下几种方式:
-
模型微调(Fine-Tuning):收集足够多的正向和反向数据集,定期对模型进行微调训练,让 AI 学会怎么回答。
-
检索增强生成(RAG) 技术:
-
在回答问题之前,可以通过向量化匹配或者微模型来完成问题路由,判断问题是否需要以下的工具来补充相关的一些信息。
-
联网搜索: 如果智能体拥有这方面的工具(Tool),可以在对话时,打开这个功能,并引导智能体在每次回答之前,需要先在网上寻找与问题最相关的一些知识。
-
知识库、数据库: 专业智能体往往携带有一些未被包含在主设提示词中的数据,比如图书馆智能体不可能将所有书籍的资料都纳入到提示词中。此时比较简易的处理方式就是构建智能体的知识库,并且采取合理的分段方案。除了聚焦于文档管理的知识库,也可以尝试利用数据库来实现更复杂的智能体场景。
5. 存在万能的提示词吗?
目前从我的观察上,还没有出现这样的提示词。每个提示词都有各自适用的场景,通用的提示词在处理一些专业或者行业场景下,就不如针对场景进行特定优化的提示词。
以下是个人探索时的一些见解:
需要解决高泛化性的问题? 经过语义压缩的通用提示词 + 零样本(ZeroShot)或者少样本(FewShot)
需要捏一个人设不OOC的角色智能体? 角色扮演提示词 + 角色知识库
用于获得高质量产物的超级智能体?类似Manus? 系统级提示词(System Prompt)+思维链(CoT)+ 任务规划(Planing)+工具调用(ToolCalling)+ 反思决策(Review & Decision)
6. 我不想要 AI 每次都输出长篇大论,我就想要直接获得简短明确的答案
谜底就在谜面上了属于是。
当然也可以使用以下提示词来实现,同样是顶级指令之一:
Keep the answer short and concise.(保持回答简明扼要)
如果还是效果不佳,建议在提示词内多重复几遍来提高权重。
或者你还可以明确字数限制,比如 “回答需要在 500 字内”
7. 一些奇奇怪怪的冷门 Prompt 技巧
- 符号链 Cos
- Hu 等人[1]聚焦于空间关系推理场景,让 AI 用符号代替自然描述来执行推理,让模型避免受到不必要的文字干扰,团队通过对比发现这种方式可以获得比自然描述更好的推理质量。
- 伪代码
- 李继刚 等人[2]在持续挖掘 Prompt 潜力中,发现使用 Lisp 语法来书写的 Prompt,在执行一些需要复杂逻辑推理的场景获得了更好的效果。
- 自我一致性保持
- Wang 等人[3]发现通过少样本提示,采样不同的推理路径,能解决智能体在涉及实体关系的推理过程中出现的幻觉问题。
- 前置知识提示
- Liu 等人[4] 同样是通过 Few-Shot 发现,在问 AI 问题之前提供一些绝对正确的知识,比如“地球是位于太阳系的一颗行星”,可以让 AI 回答的置信度获得明显的提升
[1] Hu, Hanxu, et al. “Chain-of-symbol prompting for spatial reasoning in large language models.” First Conference on Language Modeling. 2024.
[2]Lisp结构化提示词 李继刚、甲木等.
[3]Wang, Xuezhi, et al. “Self-consistency improves chain of thought reasoning in language models.” arXivpreprint arXiv:2203.11171 (2022).
[4] Liu, Jiacheng, et al. “Generated knowledge prompting for commonsense reasoning.” Proceedings of the 60th annual meeting of the association for computational linguistics (volume 1: long papers). 2022.
五、 结语
提示词不是高深的技术,而是一种与 AI 沟通的 “表达艺术”。
多加观察和练习,你也能成为 AI Prompt 领域的“魔法师”!

如何学习大模型 AI ?
由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。
但是具体到个人,只能说是:
“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。
这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。
我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。
我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费】


为什么要学习大模型?
我国在A大模型领域面临人才短缺,数量与质量均落后于发达国家。2023年,人才缺口已超百万,凸显培养不足。随着AI技术飞速发展,预计到2025年,这一缺口将急剧扩大至400万,严重制约我国AI产业的创新步伐。加强人才培养,优化教育体系,国际合作并进是破解困局、推动AI发展的关键。


大模型入门到实战全套学习大礼包
1、大模型系统化学习路线
作为学习AI大模型技术的新手,方向至关重要。 正确的学习路线可以为你节省时间,少走弯路;方向不对,努力白费。这里我给大家准备了一份最科学最系统的学习成长路线图和学习规划,带你从零基础入门到精通!

2、大模型学习书籍&文档
学习AI大模型离不开书籍文档,我精选了一系列大模型技术的书籍和学习文档(电子版),它们由领域内的顶尖专家撰写,内容全面、深入、详尽,为你学习大模型提供坚实的理论基础。

3、AI大模型最新行业报告
2025最新行业报告,针对不同行业的现状、趋势、问题、机会等进行系统地调研和评估,以了解哪些行业更适合引入大模型的技术和应用,以及在哪些方面可以发挥大模型的优势。

4、大模型项目实战&配套源码
学以致用,在项目实战中检验和巩固你所学到的知识,同时为你找工作就业和职业发展打下坚实的基础。

5、大模型大厂面试真题
面试不仅是技术的较量,更需要充分的准备。在你已经掌握了大模型技术之后,就需要开始准备面试,我精心整理了一份大模型面试题库,涵盖当前面试中可能遇到的各种技术问题,让你在面试中游刃有余。

适用人群

第一阶段(10天):初阶应用
该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。
- 大模型 AI 能干什么?
- 大模型是怎样获得「智能」的?
- 用好 AI 的核心心法
- 大模型应用业务架构
- 大模型应用技术架构
- 代码示例:向 GPT-3.5 灌入新知识
- 提示工程的意义和核心思想
- Prompt 典型构成
- 指令调优方法论
- 思维链和思维树
- Prompt 攻击和防范
- …
第二阶段(30天):高阶应用
该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。
- 为什么要做 RAG
- 搭建一个简单的 ChatPDF
- 检索的基础概念
- 什么是向量表示(Embeddings)
- 向量数据库与向量检索
- 基于向量检索的 RAG
- 搭建 RAG 系统的扩展知识
- 混合检索与 RAG-Fusion 简介
- 向量模型本地部署
- …
第三阶段(30天):模型训练
恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。
到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?
- 为什么要做 RAG
- 什么是模型
- 什么是模型训练
- 求解器 & 损失函数简介
- 小实验2:手写一个简单的神经网络并训练它
- 什么是训练/预训练/微调/轻量化微调
- Transformer结构简介
- 轻量化微调
- 实验数据集的构建
- …
第四阶段(20天):商业闭环
对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。
- 硬件选型
- 带你了解全球大模型
- 使用国产大模型服务
- 搭建 OpenAI 代理
- 热身:基于阿里云 PAI 部署 Stable Diffusion
- 在本地计算机运行大模型
- 大模型的私有化部署
- 基于 vLLM 部署大模型
- 案例:如何优雅地在阿里云私有部署开源大模型
- 部署一套开源 LLM 项目
- 内容安全
- 互联网信息服务算法备案
- …
学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。
如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。
这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费】

5569

被折叠的 条评论
为什么被折叠?



