python之pandas数据合并操作


在这里插入图片描述

一、append与assign

1.1 append方法

利用序列添加行(必须指定name)

df_append = df.loc[:3,['Gender','Height']].copy()
df_append

在这里插入图片描述

s = pd.Series({'Gender':'F','Height':188},name='new_row')
df_append.append(s)

在这里插入图片描述

用DataFrame添加表

df_temp = pd.DataFrame({'Gender':['F','M'],'Height':[188,176]},index=['new_1','new_2'])
df_append.append(df_temp)

在这里插入图片描述

1.2 assign方法

该方法主要用于添加列,列名直接由参数指定:

s = pd.Series(list('abcd'),index=range(4))
df_append.assign(Letter=s)

在这里插入图片描述

df_append.assign(col1=lambda x:x['Gender']*2,col2=s)

在这里插入图片描述

二、combine与update

combine和update都是用于表的填充函数,可以根据某种规则填充

2.1 combine

combine方法是按照表的顺序轮流进行逐列循环的,而且自动索引对齐,缺失值为NaN

df_combine_1 = df.loc[:1,['Gender','Height']].copy()
df_combine_2 = df.loc[10:11,['Gender','Height']].copy()
df_combine_1.combine(df_combine_2,lambda x,y:print(x,y))

在这里插入图片描述

df1 = pd.DataFrame({'A': [1, 2], 'B': [3, 4]})
df2 = pd.DataFrame({'A': [8, 7], 'B': [6, 5]})
df1.combine(df2,lambda x,y:x if x.mean()>y.mean() else y)

在这里插入图片描述
索引对齐特性(默认状态下,后面的表没有的行列都会设置为NaN)

df2 = pd.DataFrame({'B': [8, 7], 'C': [6, 5]},index=[1,2])
df1.combine(df2,lambda x,y:x if x.mean()>y.mean() else y)

在这里插入图片描述
使得df1原来符合条件的值不会被覆盖

df1.combine(df2,lambda x,y:x if x.mean()>y.mean() else y,overwrite=False) 

在这里插入图片描述
在新增匹配df2的元素位置填充-1

df1.combine(df2,lambda x,y:x if x.mean()>y.mean() else y,fill_value=-1)

在这里插入图片描述
ombine_first方法作用是用df2填补df1的缺失值,功能比较简单,但很多时候会比combine更常用

df1 = pd.DataFrame({'A': [None, 0], 'B': [None, 4]})
df2 = pd.DataFrame({'A': [1, 1], 'B': [3, 3]})
df1.combine_first(df2)

在这里插入图片描述

df1 = pd.DataFrame({'A': [None, 0], 'B': [4, None]})
df2 = pd.DataFrame({'B': [3, 3], 'C': [1, 1]}, index=[1, 2])
df1.combine_first(df2)

在这里插入图片描述

2.2 update方法

update方法三个特点:

  1. 返回的框索引只会与被调用框的一致
  2. 第二个框中的nan元素不会起作用
  3. 没有返回值,直接在df上操作

索引完全对齐情况下的操作

df1 = pd.DataFrame({'A': [1, 2, 3],
                    'B': [400, 500, 600]})
df2 = pd.DataFrame({'B': [4, 5, 6],
                    'C': [7, 8, 9]})
df1.update(df2)
df1

在这里插入图片描述
部分更新

df1 = pd.DataFrame({'A': ['a', 'b', 'c'],
                    'B': ['x', 'y', 'z']})
df2 = pd.DataFrame({'B': ['d', 'e']}, index=[1,2])
df1.update(df2)
df1

在这里插入图片描述
缺失值不会填充

df1 = pd.DataFrame({'A': [1, 2, 3],
                    'B': [400, 500, 600]})
df2 = pd.DataFrame({'B': [4, np.nan, 6]})
df1.update(df2)
df1

在这里插入图片描述

三、concat方法

concat方法可以在两个维度上拼接,默认纵向凭借(axis=0),拼接方式默认外连接
所谓外连接,就是取拼接方向的并集,而’inner’时取拼接方向(若使用默认的纵向拼接,则为列的交集)的交集

df1 = pd.DataFrame({'A': ['A0', 'A1'],
                    'B': ['B0', 'B1']},
                    index = [0,1])
df2 = pd.DataFrame({'A': ['A2', 'A3'],
                    'B': ['B2', 'B3']},
                    index = [2,3])
df3 = pd.DataFrame({'A': ['A1', 'A3'],
                    'D': ['D1', 'D3'],
                    'E': ['E1', 'E3']},
                    index = [1,3])
pd.concat([df1,df2])

在这里插入图片描述
axis=1时沿列方向拼接:

pd.concat([df1,df2],axis=1)

在这里插入图片描述
join设置为内连接(由于axis=0,因此列取交集)

pd.concat([df3,df1],join='inner')

在这里插入图片描述
join设置为外链接:

pd.concat([df3,df1],join='outer',sort=True) #sort设置列排序,默认为False

在这里插入图片描述
verify_integrity检查列是否唯一:

#pd.concat([df3,df1],verify_integrity=True,sort=True) 报错
s = pd.Series(['X0', 'X1'], name='X')
pd.concat([df1,s],axis=1)

在这里插入图片描述

key参数用于对不同的数据框增加一个标号,便于索引

pd.concat([df1,df2], keys=['x', 'y'])
pd.concat([df1,df2], keys=['x', 'y']).index

在这里插入图片描述

四、merge与join

4.1 merge函数

merge函数的作用是将两个pandas对象横向合并,遇到重复的索引项时会使用笛卡尔积,默认inner连接,可选left、outer、right连接所谓左连接,就是指以第一个表索引为基准,右边的表中如果不再左边的则不加入,如果在左边的就以笛卡尔积的方式加入merge/join与concat的不同之处在于on参数,可以指定某一个对象为key来进行连接。

left = pd.DataFrame({'key1': ['K0', 'K0', 'K1', 'K2'],
                     'key2': ['K0', 'K1', 'K0', 'K1'],
                      'A': ['A0', 'A1', 'A2', 'A3'],
                      'B': ['B0', 'B1', 'B2', 'B3']}) 
right = pd.DataFrame({'key1': ['K0', 'K1', 'K1', 'K2'],
                      'key2': ['K0', 'K0', 'K0', 'K0'],
                      'C': ['C0', 'C1', 'C2', 'C3'],
                      'D': ['D0', 'D1', 'D2', 'D3']})
right2 = pd.DataFrame({'key1': ['K0', 'K1', 'K1', 'K2'],
                      'key2': ['K0', 'K0', 'K0', 'K0'],
                      'C': ['C0', 'C1', 'C2', 'C3']})

以key1为准则连接,如果具有相同的列,则默认suffixes=(’_x’,’_y’)

pd.merge(left, right, on='key1')

在这里插入图片描述
以多组键连接:

pd.merge(left, right, on=['key1','key2'])

在这里插入图片描述
默认使用inner连接,因为merge只能横向拼接,所以取行向上keys的交集,下面看如果使用how=outer参数注意:这里的how就是concat的join

pd.merge(left, right, how='outer', on=['key1','key2'])

在这里插入图片描述

4.2 join方法

join函数作用是将多个pandas对象横向拼接,遇到重复的索引项时会使用笛卡尔积,默认左连接,可选inner、outer、right连接。

left = pd.DataFrame({'A': ['A0', 'A1', 'A2'],
                     'B': ['B0', 'B1', 'B2']},
                    index=['K0', 'K1', 'K2'])
right = pd.DataFrame({'C': ['C0', 'C2', 'C3'],
                      'D': ['D0', 'D2', 'D3']},
                    index=['K0', 'K2', 'K3'])
left.join(right)

在这里插入图片描述
对于many_to_one模式下的合并,往往join更为方便,同样可以指定key:

left = pd.DataFrame({'A': ['A0', 'A1', 'A2', 'A3'],
                     'B': ['B0', 'B1', 'B2', 'B3'],
                     'key': ['K0', 'K1', 'K0', 'K1']})
right = pd.DataFrame({'C': ['C0', 'C1'],
                      'D': ['D0', 'D1']},
                     index=['K0', 'K1'])
left.join(right, on='key')

在这里插入图片描述
多层key:

left = pd.DataFrame({'A': ['A0', 'A1', 'A2', 'A3'],
                     'B': ['B0', 'B1', 'B2', 'B3'],
                     'key1': ['K0', 'K0', 'K1', 'K2'],
                     'key2': ['K0', 'K1', 'K0', 'K1']})
index = pd.MultiIndex.from_tuples([('K0', 'K0'), ('K1', 'K0'),
                                   ('K2', 'K0'), ('K2', 'K1')],names=['key1','key2'])
right = pd.DataFrame({'C': ['C0', 'C1', 'C2', 'C3'],
                      'D': ['D0', 'D1', 'D2', 'D3']},
                     index=index)
left.join(right, on=['key1','key2'])

在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值