零基础CV学习———基于街景字符编码识别

一、赛题理解

本次赛题虽然是一个简单的字符识别问题,但有多种解法可以使用到计算机视觉领域中的各个模型。

  • 赛题名称:零基础入门CV之街道字符识别

  • 赛题目标:通过这道赛题可以引导大家走入计算机视觉的世界,主要针对竞赛选手上手视觉赛题,提高对数据建模能力。

  • 赛题任务:赛题以计算机视觉中字符识别为背景,要求选手预测街道字符编码,这是一个典型的字符识别问题。

  • 赛题数据采用公开数据集SVHN

1.1 赛题数据

赛题以街道字符为为赛题数据,该数据来自收集的SVHN街道字符,并进行了匿名采样处理。训练集数据包括3W张照片,验证集数据包括1W张照片,每张照片包括颜色图像和对应的编码类别和具体位置;测试集A包括4W张照片,测试集B包括4W张照片。

需要注意的是本赛题需要选手识别图片中所有的字符,为了降低比赛难度,提供了训练集、验证集和测试集中所有字符的位置框。

数据标签
在这里插入图片描述
字符坐标
在这里插入图片描述
在比赛数据(训练集、测试集和验证集)中,同一张图片中可能包括一个或者多个字符,因此在比赛数据的JSON标注中,会有两个字符的边框信息。

1.2 评测指标

选手提交结果与实际图片的编码进行对比,以编码整体识别准确率为评价指标。任何一个字符错误都为错误,最终评测指标结果越大越好,具体计算公式如下:
Score=编码识别正确的数量/测试集图片数量

1.3 数据读取

 import json
train_json = json.load(open('../input/train.json'))

# 数据标注处理
def parse_json(d):
    arr = np.array([
        d['top'], d['height'], d['left'],  d['width'], d['label']
    ])
    arr = arr.astype(int)
    return arr


img = cv2.imread('../input/train/000000.png')
arr = parse_json(train_json['000000.png'])

plt.figure(figsize=(10, 10))
plt.subplot(1, arr.shape[1]+1, 1)
plt.imshow(img)
plt.xticks([]); plt.yticks([])

for idx in range(arr.shape[1]):
    plt.subplot(1, arr.shape[1]+1, idx+2)
    plt.imshow(img[arr[0, idx]:arr[0, idx]+arr[1, idx],arr[2, idx]:arr[2, idx]+arr[3, idx]])
    plt.title(arr[4, idx])
    plt.xticks([]); plt.yticks([])

1.4 解题思路

赛题本质是分类问题,需要对图片的字符进行识别。但赛题给定的数据图片中不同图片中包含的字符数量不等,本次赛题的难点是需要对不定长的字符进行识别,与传统的图像分类任务有所不同。

定长字符识别
可以将赛题抽象为一个定长字符识别问题,在赛题数据集中大部分图像中字符个数为2-4个,最多的字符的个数为6个。因此可以对于所有的图像都抽象为6个字符的识别问题,字符23填充为23XXXX,字符231填充为231XXX。经过填充之后,原始的赛题可以简化了6个字符的分类问题。在每个字符的分类中会进行11个类别的分类,假如分类为填充字符,则表明该字符为空。

不定长字符识别
在字符识别研究中,有特定的方法来解决此种不定长的字符识别问题,比较典型的有CRNN字符识别模型。在本次赛题中给定的图像数据都比较规整,可以视为一个单词或者一个句子。

检测再识别
在赛题数据中已经给出了训练集、验证集中所有图片中字符的位置,因此可以首先将字符的位置进行识别,利用物体检测的思路完成。 此种思路需要参赛选手构建字符检测模型,对测试集中的字符进行识别。选手可以参考物体检测模型SSD或者YOLO来完成。

二、数据读取与数据扩增

2.1 数据读取

基于pillow(PIL)

from PIL import Image,ImageFilter
im =Image.open('IMG/Task02/pillow读取原图.jpg')
im.show()

在这里插入图片描述

# 模糊原图
im2 = im.filter(ImageFilter.BLUR)
im2.save('blur.jpg', 'jpeg')
# 缩放原图
im.thumbnail((w//2, h//2))
im.save('thumbnail.jpg', 'jpeg')

在这里插入图片描述

在这里插入图片描述
基于openCV
OpenCV包含了众多的图像处理的功能与操作,内置了很多的图像特征处理算法,如关键点检测、边缘检测和直线检测等。

import cv
img = cv2.imread('cat.jpg')
# Opencv默认颜色通道顺序是BRG,转换一下
img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
# 转换为灰度图
img2 = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
# Canny边缘检测
edges = cv2.Canny(img, 30, 70)<br>cv2.imwrite('canny.jpg', edges)

在这里插入图片描述
在这里插入图片描述

2.2 数据扩增

在深度学习模型的训练过程中,数据扩增是必不可少的环节。现有深度学习的参数非常多,一般的模型可训练的参数量基本上都是万到百万级别,而训练集样本的数量很难有这么多。 其次数据扩增可以扩展样本空间,假设现在的分类模型需要对汽车进行分类,左边的是汽车A,右边为汽车B。如果不使用任何数据扩增方法,深度学习模型会从汽车车头的角度来进行判别,而不是汽车具体的区别。
数据扩增可以增加训练集的样本,同时也可以有效缓解模型过拟合的情况,也可以给模型带来的更强的泛化能力。
常见数据扩增库

  • torchvision,提供了基本的数据数据扩增方法,可以无缝与torch进行集成;但数据扩增方法种类较少,且速度中等。
  • imgaug,提供了多样的数据扩增方法,且组合起来非常方便,速度较快。
  • albumentations,提供了多样的数据扩增方法,对图像分类、语义分割、物体检测和关键点检测都支持,速度较快。

数据扩增方法:从颜色空间、尺度空间到样本空间,同时根据不同任务数据扩增都有相应的区别。对于图像分类,数据扩增一般不会改变标签;对于物体检测,数据扩增会改变物体坐标位置;对于图像分割,数据扩增会改变像素标签。
常见数据扩增方法:常见的数据扩增方法中,一般会从图像颜色、尺寸、形态、空间和像素等角度进行变换。当然不同的数据扩增方法可以自由进行组合,得到更加丰富的数据扩增方法。
以torchvision为例

  • transforms.CenterCrop 对图片中心进行裁剪
  • transforms.ColorJitter 对图像颜色的对比度、饱和度和零度进行变换
  • transforms.FiveCrop 对图像四个角和中心进行裁剪得到五分图像
  • transforms.Grayscale 对图像进行灰度变换
  • transforms.Pad 使用固定值进行像素填充
  • transforms.RandomAffine 随机仿射变换
  • transforms.RandomCrop 随机区域裁剪
  • transforms.RandomHorizontalFlip 随机水平翻转
  • transforms.RandomRotation 随机旋转
  • transforms.RandomVerticalFlip 随机垂直翻转

数据扩增示例:
在这里插入图片描述

2.3 基于pytorch读取数据并扩增

在Pytorch中数据是通过Dataset进行封装,并通过DataLoder进行并行读取。只需要重载一下数据读取的逻辑就可以完成数据的读取。

  • Dataset:对数据集的封装,提供索引方式的对数据样本进行读取
  • DataLoder:对Dataset进行封装,提供批量读取的迭代读取
import os, sys, glob, shutil, json
import cv2
from PIL import Image
import numpy as np
import torch
from torch.utils.data.dataset import Dataset
import torchvision.transforms as transforms

class SVHNDataset(Dataset):
    def __init__(self, img_path, img_label, transform=None):
        self.img_path = img_path
        self.img_label = img_label 
        if transform is not None:
            self.transform = transform
        else:
            self.transform = None
            
    def __getitem__(self, index):
        img = Image.open(self.img_path[index]).convert('RGB')
        if self.transform is not None:
            img = self.transform(img) 
        # 原始SVHN中类别10为数字0
        lbl = np.array(self.img_label[index], dtype=np.int)
        lbl = list(lbl)  + (5 - len(lbl)) * [10]        
        return img, torch.from_numpy(np.array(lbl[:5]))
        
    def __len__(self):
        return len(self.img_path)
		train_path = glob.glob('../input/train/*.png')
		train_path.sort()
		train_json = json.load(open('../input/train.json'))
		train_label = [train_json[x]['label'] for x in train_json]
		data = SVHNDataset(train_path, train_label,
          transforms.Compose([
              # 缩放到固定尺寸
              transforms.Resize((64, 128)),
              # 随机颜色变换
              transforms.ColorJitter(0.2, 0.2, 0.2),
              # 加入随机旋转
              transforms.RandomRotation(5),
              # 将图片转换为pytorch 的tesntor
              # transforms.ToTensor(),
              # 对图像像素进行归一化
              # transforms.Normalize([0.485,0.456,0.406],[0.229,0.224,0.225])
            ]))

train_loader = torch.utils.data.DataLoader(
        SVHNDataset(train_path, train_label,
                   transforms.Compose([
                       transforms.Resize((64, 128)),
                       transforms.ColorJitter(0.3, 0.3, 0.2),
                       transforms.RandomRotation(5),
                       transforms.ToTensor(),
                       transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])
            ])), 
    batch_size=10, # 每批样本个数
    shuffle=False, # 是否打乱顺序
    num_workers=10, # 读取的线程个数
)

for data in train_loader:
    break

在加入DataLoder后,数据按照批次获取,每批次调用Dataset读取单个样本进行拼接。此时data的格式为:
torch.Size([10, 3, 64, 128]), torch.Size([10, 6])
前者为图像文件,为batchsize * chanel * height * width次序;后者为字符标签。

三、字符识别模型

本节定义一个定长多字符分类模型

3.1 CNN简单介绍

卷积神经网络(简称CNN)是一类特殊的人工神经网络,是深度学习中重要的一个分支。CNN在很多领域都表现优异,精度和速度比传统计算学习算法高很多。特别是在计算机视觉领域,CNN是解决图像分类、图像检索、物体检测和语义分割的主流模型。

CNN每一层由众多的卷积核组成,每个卷积核对输入的像素进行卷积操作,得到下一次的输入。随着网络层的增加卷积核会逐渐扩大感受野,并缩减图像的尺寸。

CNN是一种层次模型,输入的是原始的像素数据。CNN通过卷积(convolution)、池化(pooling)、非线性激活函数(non-linear activation function)和全连接层(fully connected layer)构成。

如下图所示为LeNet网络结构,是非常经典的字符识别模型。两个卷积层,两个池化层,两个全连接层组成。卷积核都是5×5,stride=1,池化层使用最大池化。
在这里插入图片描述

通过多次卷积和池化,CNN的最后一层将输入的图像像素映射为具体的输出。如在分类任务中会转换为不同类别的概率输出,然后计算真实标签与CNN模型的预测结果的差异,并通过反向传播更新每层的参数,并在更新完成后再次前向传播,如此反复直到训练完成 。

与传统机器学习模型相比,CNN具有一种端到端(End to End)的思路。在CNN训练的过程中是直接从图像像素到最终的输出,并不涉及到具体的特征提取和构建模型的过程,也不需要人工的参与。

3.2 pytorch构建CNN模型

基于pytorch构建CNN模型(本节CNN模型包括两个卷积层,最后并联6个全连接层进行分类),只需要定义好模型的参数和正向传播即可,Pytorch会根据正向传播自动计算反向传播。以此来训练并完成字符识别。

  • 数据输入层/ Input layer
  • 卷积计算层/ CONV layer
  • ReLU激励层 / ReLU layer
  • 池化层 / Pooling layer
  • 全连接层 / FC layer

数据输入层:

该层要做的处理主要是对原始图像数据进行预处理,其中包括:

  • 去均值:把输入数据各个维度都中心化为0,如下图所示,其目的就是把样本的中心拉回到坐标系原点上。
  • 归一化:幅度归一化到同样的范围,如下所示,即减少各维度数据取值范围的差异而带来的干扰,比如,我们有两个维度的特征A和B,A范围是0到10,而B范围是0到10000,如果直接使用这两个特征是有问题的,好的做法就是归一化,即A和B的数据都变为0到1的范围。
  • PCA/白化:用PCA降维;白化是对数据各个特征轴上的幅度归一化。

卷积计算层:

这一层就是卷积神经网络最重要的一个层次,也是“卷积神经网络”的名字来源。
在这个卷积层,有两个关键操作:

  • 局部关联。每个神经元看做一个滤波器(filter)
  • 窗口(receptive field)滑动, filter对局部数据计算

激励层:

把卷积层输出结果做非线性映射。CNN采用的激励函数一般为ReLU(The Rectified Linear Unit/修正线性单元),它的特点是收敛快,求梯度简单,但较脆弱。

池化层:

池化层夹在连续的卷积层中间, 用于压缩数据和参数的量,减小过拟合。简而言之,如果输入是图像的话,那么池化层的最主要作用就是压缩图像。

全连接层:

两层之间所有神经元都有权重连接,通常全连接层在卷积神经网络尾部。也就是跟传统的神经网络神经元的连接方式是一样的。

class SVHN_Model1(nn.Module):
    def __init__(self):
        super(SVHN_Model1, self).__init__()
        # CNN提取特征模块
        self.cnn = nn.Sequential(
            nn.Conv2d(3, 16, kernel_size=(3, 3), stride=(2, 2)),
            nn.ReLU(),  
            nn.MaxPool2d(2),
            nn.Conv2d(16, 32, kernel_size=(3, 3), stride=(2, 2)),
            nn.ReLU(), 
            nn.MaxPool2d(2),
        )
        # 
        self.fc1 = nn.Linear(32*3*7, 11)
        self.fc2 = nn.Linear(32*3*7, 11)
        self.fc3 = nn.Linear(32*3*7, 11)
        self.fc4 = nn.Linear(32*3*7, 11)
        self.fc5 = nn.Linear(32*3*7, 11)
        self.fc6 = nn.Linear(32*3*7, 11)
       
    def forward(self, img):        
        feat = self.cnn(img)
        feat = feat.view(feat.shape[0], -1)
        c1 = self.fc1(feat)
        c2 = self.fc2(feat)
        c3 = self.fc3(feat)
        c4 = self.fc4(feat)
        c5 = self.fc5(feat)
        c6 = self.fc6(feat)
        return c1, c2, c3, c4, c5, c6

model = SVHN_Model1()

训练

# 损失函数
criterion = nn.CrossEntropyLoss()
# 优化器
optimizer = torch.optim.Adam(model.parameters(), 0.005)

loss_plot, c0_plot = [], []
# 迭代10个Epoch
for epoch in range(10):
    for data in train_loader:
        c0, c1, c2, c3, c4, c5 = model(data[0])
        loss = criterion(c0, data[1][:, 0]) + \
                criterion(c1, data[1][:, 1]) + \
                criterion(c2, data[1][:, 2]) + \
                criterion(c3, data[1][:, 3]) + \
                criterion(c4, data[1][:, 4]) + \
                criterion(c5, data[1][:, 5])
        loss /= 6
        optimizer.zero_grad()
        loss.backward()
        optimizer.step()
        
        loss_plot.append(loss.item())
        c0_plot.append((c0.argmax(1) == data[1][:, 0]).sum().item()*1.0 / c0.shape[0])
        
    print(epoch)

训练完成后我们可以将训练过程中的损失和准确率进行绘制,如下图所示。从图中可以看出模型的损失在迭代过程中逐渐减小,字符预测的准确率逐渐升高。
在这里插入图片描述

当然为了追求精度,也可以使用在ImageNet数据集上的预训练模型,具体方法如下:

class SVHN_Model2(nn.Module):
    def __init__(self):
        super(SVHN_Model1, self).__init__()
                
        model_conv = models.resnet18(pretrained=True)
        model_conv.avgpool = nn.AdaptiveAvgPool2d(1)
        model_conv = nn.Sequential(*list(model_conv.children())[:-1])
        self.cnn = model_conv
        
        self.fc1 = nn.Linear(512, 11)
        self.fc2 = nn.Linear(512, 11)
        self.fc3 = nn.Linear(512, 11)
        self.fc4 = nn.Linear(512, 11)
        self.fc5 = nn.Linear(512, 11)
    
    def forward(self, img):        
        feat = self.cnn(img)
        # print(feat.shape)
        feat = feat.view(feat.shape[0], -1)
        c1 = self.fc1(feat)
        c2 = self.fc2(feat)
        c3 = self.fc3(feat)
        c4 = self.fc4(feat)
        c5 = self.fc5(feat)
        return c1, c2, c3, c4, c5

四、模型训练与验证

一个成熟的深度学习训练流程至少包括以下三个方面:

  • 在训练集上进行训练,并在验证集上进行验证;
  • 模型可以保存最优的权重,并读取权重;
  • 记录下训练集和验证集的精度,便于调参。

4.1 构造验证集

在机器学习模型(特别是深度学习模型)的训练过程中,模型是非常容易过拟合的。深度学习模型在不断的训练过程中训练误差会逐渐降低,但测试误差的走势则不一定。在模型的训练过程中,模型只能利用训练数据来进行训练,模型并不能接触到测试集上的样本。因此模型如果将训练集学的过好,模型就会记住训练样本的细节,导致模型在测试集的泛化效果较差,这种现象称为过拟合(Overfitting)。与过拟合相对应的是欠拟合(Underfitting),即模型在训练集上的拟合效果较差。
在这里插入图片描述
如图所示:随着模型复杂度和模型训练轮数的增加,CNN模型在训练集上的误差会降低,但在测试集上的误差会逐渐降低,然后逐渐升高,而我们为了追求的是模型在测试集上的精度越高越好。

导致模型过拟合的情况有很多种原因,其中最为常见的情况是模型复杂度(Model Complexity )太高,导致模型学习到了训练数据的方方面面,学习到了一些细枝末节的规律。解决上述问题最好的解决方法:构建一个与测试集尽可能分布一致的样本集(可称为验证集),在训练过程中不断验证模型在验证集上的精度,并以此控制模型的训练。 一般情况下,我们可以从已有的数据集划分出一个验证集。

训练集、测试集、验证集的作用大致如下:

  • 训练集(Train Set):模型用于训练和调整模型参数;
  • 验证集(Validation Set):用来验证模型精度和调整模型超参数;
  • 测试集(Test Set):验证模型的泛化能力。

因为训练集和验证集是分开的,所以模型在验证集上面的精度在一定程度上可以反映模型的泛化能力。在划分验证集的时候,需要注意验证集的分布应该与测试集尽量保持一致,不然模型在验证集上的精度就失去了指导意义。

若没有现成的验证集,则需要我们通过一定方法来进行构造。
在这里插入图片描述

  • 留出法(Hold-Out)
    直接将训练集划分成两部分,新的训练集和验证集。这种划分方式的优点是最为直接简单;缺点是只得到了一份验证集,有可能导致模型在验证集上过拟合。留出法应用场景是数据量比较大的情况。

  • 交叉验证法(Cross Validation,CV)
    将训练集划分成K份,将其中的K-1份作为训练集,剩余的1份作为验证集,循环K训练。这种划分方式是所有的训练集都是验证集,最终模型验证精度是K份平均得到。这种方式的优点是验证集精度比较可靠,训练K次可以得到K个有多样性差异的模型;CV验证的缺点是需要训练K次,不适合数据量很大的情况。

  • 自助采样法(BootStrap)
    通过有放回的采样方式得到新的训练集和验证集,每次的训练集和验证集都是有区别的。这种划分方式一般适用于数据量较小的情况

任何的验证集的划分得到的验证集都是要保证训练集-验证集-测试集的分布一致的,所以如果不管划分何种的划分方式都是需要注意的。
这里的分布一般指的是与标签相关的统计分布,比如在分类任务中“分布”指的是标签的类别分布,训练集-验证集-测试集的类别分布情况应该大体一致;如果标签是带有时序信息,则验证集和测试集的时间间隔应该保持一致。

4.2 模型训练与验证

在本节我们目标使用Pytorch来完成CNN的训练和验证过程,CNN网络结构与之前的章节中保持一致。我们需要完成的逻辑结构如下:

  • 构造训练集和验证集;
  • 每轮进行训练和验证,并根据最优验证集精度保存模型。
train_loader = torch.utils.data.DataLoader(
    train_dataset,
    batch_size=10, 
    shuffle=True, 
    num_workers=10, 
)

val_loader = torch.utils.data.DataLoader(
    val_dataset,
    batch_size=10, 
    shuffle=False, 
    num_workers=10, 
)

model = SVHN_Model1()
criterion = nn.CrossEntropyLoss (size_average=False)
optimizer = torch.optim.Adam(model.parameters(), 0.001)
best_loss = 1000.0
for epoch in range(20):
    print('Epoch: ', epoch)
    
    train(train_loader, model, criterion, optimizer, epoch)
    val_loss = validate(val_loader, model, criterion)
    # 记录下验证集精度
    if val_loss < best_loss:
        best_loss = val_loss
        torch.save(model.state_dict(), './model.pt')

其中每个Epoch的训练代码如下:

def train(train_loader, model, criterion, optimizer, epoch):
    # 切换模型为训练模式
    model.train()
     for i, (input, target) in enumerate(train_loader):
        c0, c1, c2, c3, c4, c5 = model(data[0])
        loss = criterion(c0, data[1][:, 0]) + \
                criterion(c1, data[1][:, 1]) + \
                criterion(c2, data[1][:, 2]) + \
                criterion(c3, data[1][:, 3]) + \
                criterion(c4, data[1][:, 4]) + \
                criterion(c5, data[1][:, 5])
        loss /= 6
        optimizer.zero_grad()
        loss.backward()
        optimizer.step()

其中每个Epoch的验证代码如下:

def validate(val_loader, model, criterion):
    # 切换模型为预测模型
    model.eval()
    val_loss = []
  # 不记录模型梯度信息
    with torch.no_grad():
        for i, (input, target) in enumerate(val_loader):
            c0, c1, c2, c3, c4, c5 = model(data[0])
            loss = criterion(c0, data[1][:, 0]) + \
                    criterion(c1, data[1][:, 1]) + \
                    criterion(c2, data[1][:, 2]) + \
                    criterion(c3, data[1][:, 3]) + \
                    criterion(c4, data[1][:, 4]) + \
                    criterion(c5, data[1][:, 5])
            loss /= 6
            val_loss.append(loss.item())
    return np.mean(val_loss)  
4.3 模型保存与加载

在Pytorch中模型的保存和加载非常简单,比较常见的做法是保存和加载模型参数:

 torch.save(model_object.state_dict(), 'model.pt')    
 model.load_state_dict(torch.load(' model.pt')) 

深度学习原理少但实践性非常强,基本上很多的模型的验证只能通过训练来完成。同时深度学习有众多的网络结构和超参数,因此需要反复尝试。训练深度学习模型需要GPU的硬件支持,也需要较多的训练时间,如何有效的训练深度学习模型逐渐成为了一门学问。
与传统的机器学习模型不同,深度学习模型的精度与模型的复杂度、数据量、正则化、数据扩增等因素直接相关。所以当深度学习模型处于不同的阶段(欠拟合、过拟合和完美拟合)的情况下,大家可以知道可以什么角度来继续优化模型。

该项目的逻辑大致如下:

  • 1.初步构建简单的CNN模型,不用特别复杂,跑通训练、验证和预测的流程;

  • 2.简单CNN模型的损失会比较大,尝试增加模型复杂度,并观察验证集精度;

  • 3.在增加模型复杂度的同时增加数据扩增方法,直至验证集精度不变。

其中一般调参流程如下:
在这里插入图片描述

五、模型集成

本章旨在何使用集成学习提高预测精度,一定程度解决过拟合。

集成学习是一种机器学习范式。在集成学习中,我们会训练多个模型(通常称为弱学习器)解决相同的问题,并将它们结合起来以获得更好的结果。最重要的假设是:当弱模型被正确组合时,我们可以得到更精确和/或更鲁棒的模型。
在大多数情况下,这些基本模型本身的性能并不是非常好,这要么是因为它们具有较高的偏置(例如,低自由度模型),要么是因为他们的方差太大导致鲁棒性不强(例如,高自由度模型)。 这个就有点类似多分类器组合形成强复合模型。

5.1 集成学习方法

在机器学习中的集成学习可以在一定程度上提高预测精度,常见的集成学习方法有:

  • Stacking:该方法通常考虑的是异质弱学习器,并行地学习它们,并通过训练一个「元模型」将它们组合起来,根据不同弱模型的预测结果输出一个最终的预测结果。
  • Bagging:该方法通常考虑的是同质弱学习器,相互独立地并行学习这些弱学习器,并按照某种确定性的平均过程将它们组合起来。
  • Boosting:该方法通常考虑的也是同质弱学习器。它以一种高度自适应的方法顺序地学习这些弱学习器(每个基础模型都依赖于前面的模型),并按照某种确定性的策略将它们组合起来。

这些集成学习方法与具体验证集划分联系紧密,由于深度学习模型一般需要较长的训练周期,如果硬件设备不允许建议选取留出法,如果需要追求精度可以使用交叉验证的方法。

假设构建了10折交叉验证,训练得到10个CNN模型。
在这里插入图片描述
那么在10个CNN模型可以使用如下方式进行集成:

  • 对预测的结果的概率值进行平均,然后解码为具体字符;
  • 对预测的字符进行投票,得到最终字符。

5.2 深度学习中的集成学习

此外在深度学习中本身还有一些集成学习思路的做法,值得借鉴学习。

5.2.1 Dropout

Dropout可以作为训练深度神经网络的一种技巧,在每个训练批次中,通过随机让一部分的节点停止工作。同时在预测的过程中让所有的节点都其作用。Dropout经常出现在在先有的CNN网络中,可以有效的缓解模型过拟合的情况,也可以在预测时增加模型的精度。
Dropout可以作为训练深度神经网络的一种trick供选择。在每个训练批次中,通过忽略一半的特征检测器(让一半的隐层节点值为0),可以明显地减少过拟合现象。这种方式可以减少特征检测器(隐层节点)间的相互作用,检测器相互作用是指某些检测器依赖其他检测器才能发挥作用。说的简单一点就是:我们在前向传播的时候,让某个神经元的激活值以一定的概率p停止工作,这样可以使模型泛化性更强,因为它不会太依赖某些局部的特征。
在这里插入图片描述
加入Dropout后的网络结构如下:

# 定义模型
class SVHN_Model1(nn.Module):
    def __init__(self):
        super(SVHN_Model1, self).__init__()
        # CNN提取特征模块
        self.cnn = nn.Sequential(
            nn.Conv2d(3, 16, kernel_size=(3, 3), stride=(2, 2)),
            nn.ReLU(),
            nn.Dropout(0.25),
            nn.MaxPool2d(2),
            nn.Conv2d(16, 32, kernel_size=(3, 3), stride=(2, 2)),
            nn.ReLU(), 
            nn.Dropout(0.25),
            nn.MaxPool2d(2),
        )
        # 
        self.fc1 = nn.Linear(32*3*7, 11)
        self.fc2 = nn.Linear(32*3*7, 11)
        self.fc3 = nn.Linear(32*3*7, 11)
        self.fc4 = nn.Linear(32*3*7, 11)
        self.fc5 = nn.Linear(32*3*7, 11)
        self.fc6 = nn.Linear(32*3*7, 11)
        
    def forward(self, img):        
        feat = self.cnn(img)
        feat = feat.view(feat.shape[0], -1)
        c1 = self.fc1(feat)
        c2 = self.fc2(feat)
        c3 = self.fc3(feat)
        c4 = self.fc4(feat)
        c5 = self.fc5(feat)
        c6 = self.fc6(feat)
        return c1, c2, c3, c4, c5, c6
5.2.2 TTA

测试集数据扩增(Test Time Augmentation,简称TTA)也是常用的集成学习技巧,数据扩增不仅可以在训练时候用,而且可以同样在预测时候进行数据扩增,对同一个样本预测三次,然后对三次结果进行平均。

def predict(test_loader, model, tta=10):
    model.eval()
    test_pred_tta = None
    # TTA 次数
    for _ in range(tta):
        test_pred = []
        
        with torch.no_grad():
            for i, (input, target) in enumerate(test_loader):
                c0, c1, c2, c3, c4, c5 = model(data[0])
                output = np.concatenate([c0.data.numpy(), c1.data.numpy(),
                   c2.data.numpy(), c3.data.numpy(),
                   c4.data.numpy(), c5.data.numpy()], axis=1)
                test_pred.append(output)
         
        test_pred = np.vstack(test_pred)
        if test_pred_tta is None:
            test_pred_tta = test_pred
        else:
            test_pred_tta += test_pred
	return test_pred_tta
5.2.3 Snapshot

本节的开头已经提到,假设我们训练了10个CNN则可以将多个模型的预测结果进行平均。但是加入只训练了一个CNN模型,如何做模型集成呢?

在论文Snapshot Ensembles中,作者提出使用cyclical learning rate进行训练模型,并保存精度比较好的一些checkopint,最后将多个checkpoint进行模型集成。
在这里插入图片描述
由于在cyclical learning rate中学习率的变化有周期性变大和减少的行为,因此CNN模型很有可能在跳出局部最优进入另一个局部最优。在Snapshot论文中作者通过使用表明,此种方法可以在一定程度上提高模型精度,但需要更长的训练时间。
在这里插入图片描述

5.3 结果后处理

在不同的任务中可能会有不同的解决方案,不同思路的模型不仅可以互相借鉴,同时也可以修正最终的预测结果。

在本题中,可以从以下几个思路对预测结果进行后处理:

  • 统计图片中每个位置字符出现的频率,使用规则修正结果;
  • 单独训练一个字符长度预测模型,用来预测图片中字符个数,并修正结果。

另外需要注意的是:

  • 集成学习只能在一定程度上提高精度,并需要耗费较大的训练时间,因此建议先使用提高单个模型的精度,再考虑集成学习过程;
  • 具体的集成学习方法需要与验证集划分方法结合,Dropout和TTA在所有场景有可以起作用。
  • 0
    点赞
  • 3
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
天池是一个著名的数据科学竞赛平台,而datawhale是一家致力于数据科学教育和社群建设的组织。街景字符编码识别是指通过计算机视觉技术,对街道场景中的字符进行自动识别和分类。 街景字符编码识别是一项重要的研究领域,对于提高交通安全、城市管理和智能驾驶技术都具有重要意义。街道场景中的字符包括道路标志、车牌号码、店铺招牌等。通过对这些字符进行准确的识别,可以辅助交通管理人员进行交通监管、道路规划和交通流量分析。同时,在智能驾驶领域,街景字符编码识别也是一项关键技术,可以帮助自动驾驶系统准确地识别和理解道路上的各种标志和标识,为自动驾驶提供可靠的环境感知能力。 天池和datawhale联合举办街景字符编码识别竞赛,旨在吸引全球数据科学和计算机视觉领域的优秀人才,集思广益,共同推动该领域的研究和发展。通过这个竞赛,参赛选手可以使用各种机器学习深度学习算法,基于提供的街景字符数据集,设计和训练模型,实现准确的字符编码识别。这个竞赛不仅有助于促进算法研发和技术创新,也为各参赛选手提供了一个学习、交流和展示自己技能的平台。 总之,天池datawhale街景字符编码识别是一个具有挑战性和实际应用需求的竞赛项目,旨在推动计算机视觉和智能交通领域的技术发展,同时也为数据科学爱好者提供了一个学习和展示自己能力的机会。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值