目录
- 1 ElasticSearch高级操作
- 2 ElasticSearch查询
- 3 ES复杂聚合查询
想学习架构师构建流程请跳转:Java架构师系统架构设计
1 ElasticSearch高级操作
1.1 bulk批量操作-脚本
脚本:
测试用的5号文档
POST /person1/_doc/5
{
"name":"张三5号",
"age":18,
"address":"北京海淀区"
}
批量操作文本
#批量操作
#1.删除5号
#新增8号
#更新2号 name为2号
POST _bulk
{"delete":{"_index":"person1","_id":"5"}}
{"create":{"_index":"person1","_id":"8"}}
{"name":"八号","age":18,"address":"北京"}
{"update":{"_index":"person1","_id":"2"}}
{"doc":{"name":"2号"}}
结果
{
"took" : 51,
"errors" : true,
"items" : [
{
"delete" : {
"_index" : "person1",
"_type" : "_doc",
"_id" : "5",
"_version" : 2,
"result" : "deleted",
"_shards" : {
"total" : 2,
"successful" : 1,
"failed" : 0
},
"_seq_no" : 6,
"_primary_term" : 2,
"status" : 200
}
},
{
"create" : {
"_index" : "person1",
"_type" : "_doc",
"_id" : "8",
"_version" : 1,
"result" : "created",
"_shards" : {
"total" : 2,
"successful" : 1,
"failed" : 0
},
"_seq_no" : 7,
"_primary_term" : 2,
"status" : 201
}
},
{
"update" : {
"_index" : "person1",
"_type" : "_doc",
"_id" : "2",
"_version" : 2,
"result" : "updated",
"_shards" : {
"total" : 2,
"successful" : 1,
"failed" : 0
},
"_seq_no" : 10,
"_primary_term" : 2,
"status" : 200
}
}
]
}
1.2 bulk批量操作-JavaAPI
/**
* Bulk 批量操作
*/
@Test
public void test2() throws IOException {
//创建bulkrequest对象,整合所有操作
BulkRequest bulkRequest =new BulkRequest();
/*
# 1. 删除5号记录
# 2. 添加6号记录
# 3. 修改3号记录 名称为 “三号”
*/
//添加对应操作
//1. 删除5号记录
DeleteRequest deleteRequest=new DeleteRequest("person1","5");
bulkRequest.add(deleteRequest);
//2. 添加6号记录
Map<String, Object> map=new HashMap<>();
map.put("name","六号");
IndexRequest indexRequest=new IndexRequest("person1").id("6").source(map);
bulkRequest.add(indexRequest);
//3. 修改3号记录 名称为 “三号”
Map<String, Object> mapUpdate=new HashMap<>();
mapUpdate.put("name","三号");
UpdateRequest updateRequest=new UpdateRequest("person1","3").doc(mapUpdate);
bulkRequest.add(updateRequest);
//执行批量操作
BulkResponse response = client.bulk(bulkRequest, RequestOptions.DEFAULT);
System.out.println(response.status());
}
1.3 导入数据-分析&创建索引
PUT goods
{
"mappings": {
"properties": {
"title": {
"type": "text",
"analyzer": "ik_smart"
},
"price": {
"type": "double"
},
"createTime": {
"type": "date"
},
"categoryName": {
"type": "keyword"
},
"brandName": {
"type": "keyword"
},
"spec": {
"type": "object"
},
"saleNum": {
"type": "integer"
},
"stock": {
"type": "integer"
}
}
}
}
1.4 导入数据-代码实现
package com.itheima.elasticsearchdemo2.domain;
import com.alibaba.fastjson.annotation.JSONField;
import java.util.Date;
import java.util.Map;
public class Goods {
private int id;
private String title;
private double price;
private int stock;
private int saleNum;
private Date createTime;
private String categoryName;
private String brandName;
private Map spec;
@JSONField(serialize = false)//在转换JSON时,忽略该字段
private String specStr;//接收数据库的信息 "{}"
public int getId() {
return id;
}
public void setId(int id) {
this.id = id;
}
public String getTitle() {
return title;
}
public void setTitle(String title) {
this.title = title;
}
public double getPrice() {
return price;
}
public void setPrice(double price) {
this.price = price;
}
public int getStock() {
return stock;
}
public void setStock(int stock) {
this.stock = stock;
}
public int getSaleNum() {
return saleNum;
}
public void setSaleNum(int saleNum) {
this.saleNum = saleNum;
}
public Date getCreateTime() {
return createTime;
}
public void setCreateTime(Date createTime) {
this.createTime = createTime;
}
public String getCategoryName() {
return categoryName;
}
public void setCategoryName(String categoryName) {
this.categoryName = categoryName;
}
public String getBrandName() {
return brandName;
}
public void setBrandName(String brandName) {
this.brandName = brandName;
}
public Map getSpec() {
return spec;
}
public void setSpec(Map spec) {
this.spec = spec;
}
public String getSpecStr() {
return specStr;
}
public void setSpecStr(String specStr) {
this.specStr = specStr;
}
@Override
public String toString() {
return "Goods{" +
"id=" + id +
", title='" + title + '\'' +
", price=" + price +
", stock=" + stock +
", saleNum=" + saleNum +
", createTime=" + createTime +
", categoryName='" + categoryName + '\'' +
", brandName='" + brandName + '\'' +
", spec=" + spec +
", specStr='" + specStr + '\'' +
'}';
}
}
package com.itheima.elasticsearchdemo2.mapper;
import com.itheima.elasticsearchdemo2.domain.Goods;
import org.apache.ibatis.annotations.Mapper;
import org.springframework.stereotype.Repository;
import java.util.List;
@Repository
@Mapper
public interface GoodsMapper {
/**
* 查询所有
*/
public List<Goods> findAll();
}
<?xml version="1.0" encoding="UTF-8" ?>
<!DOCTYPE mapper PUBLIC "-//mybatis.org//DTD Mapper 3.0//EN" "http://mybatis.org/dtd/mybatis-3-mapper.dtd">
<mapper namespace="com.itheima.elasticsearchdemo2.mapper.GoodsMapper">
<select id="findAll" resultType="goods">
select
`id` ,
`title` ,
`price` ,
`stock` ,
`saleNum` ,
`createTime` ,
`categoryName`,
`brandName` ,
`spec` as specStr
from goods
</select>
</mapper>
/**
* 从Mysql 批量导入 elasticSearch
*/
@Test
public void test3() throws IOException {
//1.查询所有数据,mysql
List<Goods> goodsList = goodsMapper.findAll();
//2.bulk导入
BulkRequest bulkRequest=new BulkRequest();
//2.1 循环goodsList,创建IndexRequest添加数据
for (Goods goods : goodsList) {
//2.2 设置spec规格信息 Map的数据 specStr:{}
String specStr = goods.getSpecStr();
//将json格式字符串转为Map集合
Map map = JSON.parseObject(specStr, Map.class);
//设置spec map
goods.setSpec(map);
//将goods对象转换为json字符串
String data = JSON.toJSONString(goods);
IndexRequest indexRequest=new IndexRequest("goods").source(data,XContentType.JSON);
bulkRequest.add(indexRequest);
}
BulkResponse response = client.bulk(bulkRequest, RequestOptions.DEFAULT);
System.out.println(response.status());
}
1.5 导入数据-代码实现-详解
转换成JSON的原因:
#spec配置的数据类型是JSON对象,所以当存放字符串的时候报错
"spec": {
"type": "object"
},
错误信息
2 ElasticSearch查询
2.1 matchAll-脚本
# 默认情况下,es一次展示10条数据,通过from和size来控制分页
# 查询结果详解
GET goods/_search
{
"query": {
"match_all": {}
},
"from": 0,
"size": 100
}
GET goods
2.2 matchAll获取总记录数查询所有对象-JavaAPI
/**
* 查询所有
* 1. matchAll
* 2. 将查询结果封装为Goods对象,装载到List中
* 3. 分页。默认显示10条
*/
@Test
public void matchAll() throws IOException {
//2. 构建查询请求对象,指定查询的索引名称
SearchRequest searchRequest=new SearchRequest("goods");
//4. 创建查询条件构建器SearchSourceBuilder
SearchSourceBuilder sourceBuilder=new SearchSourceBuilder();
//6. 查询条件
QueryBuilder queryBuilder= QueryBuilders.matchAllQuery();
//5. 指定查询条件
sourceBuilder.query(queryBuilder);
//3. 添加查询条件构建器 SearchSourceBuilder
searchRequest.source(sourceBuilder);
// 8 . 添加分页信息 不设置 默认10条
// sourceBuilder.from(0);
// sourceBuilder.size(100);
//1. 查询,获取查询结果
SearchResponse searchResponse = client.search(searchRequest, RequestOptions.DEFAULT);
//7. 获取命中对象 SearchHits
SearchHits hits = searchResponse.getHits();
//7.1 获取总记录数
Long total= hits.getTotalHits().value;
System.out.println("总数:"+total);
//7.2 获取Hits数据 数组
SearchHit[] hits1 = hits.getHits();
//获取json字符串格式的数据
List<Goods> goodsList = new ArrayList<>();
for (SearchHit searchHit : hits1) {
String sourceAsString = searchHit.getSourceAsString();
//转为java对象
Goods goods = JSON.parseObject(sourceAsString, Goods.class);
goodsList.add(goods);
}
for (Goods goods : goodsList) {
System.out.println(goods);
}
}
设置条件的疑问点
2.3 termQuery 词条查询查询具体的词组不副词
term查询和字段类型有关系,首先回顾一下ElasticSearch两个数据类型
ElasticSearch两个数据类型
text:会分词,不支持聚合
keyword:不会分词,将全部内容作为一个词条,支持聚合
term查询:不会对查询条件进行分词。
GET goods/_search
{
"query": {
"term": {
"title": {
"value": "华为"
}
}
}
}
term查询,查询text类型字段时,只有其中的单词相匹配都会查到,text字段会对数据进行分词
例如:查询title 为“华为”的,title type 为text
查询categoryName 字段时,categoryName字段为keyword ,keyword:不会分词,将全部内容作为一个词条,
即完全匹配,才能查询出结果
GET goods/_search
{
"query": {
"term": {
"categoryName": {
"value": "华为手机"
}
}
}
}
2.4 matchQuery 查询条件进行分词or或and进行查询
match查询:
•会对查询条件进行分词。
•然后将分词后的查询条件和词条进行等值匹配
•默认取并集(OR)
# match查询
GET goods/_search
{
"query": {
"match": {
"title": "华为手机"
}
},
"size": 500
}
match 的默认搜索(or 并集)
例如:华为手机,会分词为 “华为”,“手机” 只要出现其中一个词条都会搜索到
match的 and(交集) 搜索
例如:例如:华为手机,会分词为 “华为”,“手机” 但要求“华为”,和“手机”同时出现在词条中
总结:
- term query会去倒排索引中寻找确切的term,它并不知道分词器的存在。这种查询适合keyword 、numeric、date
- match query知道分词器的存在。并且理解是如何被分词的
2.5 模糊查询-脚本
2.5.1 wildcard查询
wildcard查询:会对查询条件进行分词。还可以使用通配符 ?(任意单个字符) 和 * (0个或多个字符)
"*华*" 包含华字的
"华*" 华字后边多个字符
"华?" 华字后边多个字符
"*华"或"?华" 会引发全表(全索引)扫描 注意效率问题
# wildcard 查询。查询条件分词,模糊查询
GET goods/_search
{
"query": {
"wildcard": {
"title": {
"value": "华*"
}
}
}
}
2.5.2正则查询
\W:匹配包括下划线的任何单词字符,等价于 [A-Z a-z 0-9_] 开头的反斜杠是转义符
+号多次出现
(.)*为任意字符
正则查询取决于正则表达式的效率
GET goods/_search
{
"query": {
"regexp": {
"title": "\\w+(.)*"
}
}
}
2.5.3前缀查询
对keyword类型支持比较好
# 前缀查询 对keyword类型支持比较好
GET goods/_search
{
"query": {
"prefix": {
"brandName": {
"value": "三"
}
}
}
}
2.6 模糊查询-JavaAPI
//模糊查询
WildcardQueryBuilder query = QueryBuilders.wildcardQuery("title", "华*");//华后多个字符
//正则查询
RegexpQueryBuilder query = QueryBuilders.regexpQuery("title", "\\w+(.)*");
//前缀查询
PrefixQueryBuilder query = QueryBuilders.prefixQuery("brandName", "三");
2.7 范围&排序查询
# 范围查询
GET goods/_search
{
"query": {
"range": {
"price": {
"gte": 2000,
"lte": 3000
}
}
},
"sort": [
{
"price": {
"order": "desc"
}
}
]
}
//范围查询 以price 价格为条件
RangeQueryBuilder query = QueryBuilders.rangeQuery("price");
//指定下限
query.gte(2000);
//指定上限
query.lte(3000);
sourceBuilder.query(query);
//排序 价格 降序排列
sourceBuilder.sort("price",SortOrder.DESC);
2.8 queryString查询-多个字段取并集查询
queryString 多条件查询
•会对查询条件进行分词。
•然后将分词后的查询条件和词条进行等值匹配
•默认取并集(OR)
•可以指定多个查询字段
query_string:识别query中的连接符(or 、and)
# queryString
GET goods/_search
{
"query": {
"query_string": {
"fields": ["title","categoryName","brandName"],
"query": "华为 AND 手机"
}
}
}
simple_query_string:不识别query中的连接符(or 、and),查询时会将 “华为”、“and”、“手机”分别进行查询
GET goods/_search
{
"query": {
"simple_query_string": {
"fields": ["title","categoryName","brandName"],
"query": "华为 AND 手机"
}
}
}
query_string:有default_operator连接符的脚本
GET goods/_search
{
"query": {
"query_string": {
"fields": ["title","brandName","categoryName"],
"query": "华为手机 "
, "default_operator": "AND"
}
}
}
java代码
QueryStringQueryBuilder query = QueryBuilders.queryStringQuery("华为手机").field("title").field("categoryName")
.field("brandName").defaultOperator(Operator.AND);
simple_query_string:有default_operator连接符的脚本
GET goods/_search
{
"query": {
"simple_query_string": {
"fields": ["title","brandName","categoryName"],
"query": "华为手机 "
, "default_operator": "OR"
}
}
}
注意:query中的or and 是查询时 匹配条件是否同时出现----or 出现一个即可,and 两个条件同时出现
default_operator的or and 是对结果进行 并集(or)、交集(and)
2.9 布尔查询-脚本
boolQuery:对多个查询条件连接。连接方式:
•must(and):条件必须成立
•must_not(not):条件必须不成立
•should(or):条件可以成立
•filter:条件必须成立,性能比must高。不会计算得分
**得分:**即条件匹配度,匹配度越高,得分越高
# boolquery
#must和filter配合使用时,max_score(得分)是显示的
#must 默认数组形式
GET goods/_search
{
"query": {
"bool": {
"must": [
{
"term": {
"brandName": {
"value": "华为"
}
}
}
],
"filter":[
{
"term": {
"title": "手机"
}
},
{
"range":{
"price": {
"gte": 2000,
"lte": 3000
}
}
}
]
}
}
}
#filter 单独使用 filter可以是单个条件,也可多个条件(数组形式)
GET goods/_search
{
"query": {
"bool": {
"filter": [
{
"term": {
"brandName": {
"value": "华为"
}
}
}
]
}
}
}
2.10 布尔查询-JavaAPI-对多个查询条件连接
布尔查询:boolQuery
- 查询品牌名称为:华为
- 查询标题包含:手机
- 查询价格在:2000-3000
must 、filter为连接方式
term、match为不同的查询方式
//1.构建boolQuery
BoolQueryBuilder boolQuery = QueryBuilders.boolQuery();
//2.构建各个查询条件
//2.1 查询品牌名称为:华为
TermQueryBuilder termQueryBuilder = QueryBuilders.termQuery("brandName", "华为");
boolQuery.must(termQueryBuilder);
//2.2. 查询标题包含:手机
MatchQueryBuilder matchQuery = QueryBuilders.matchQuery("title", "手机");
boolQuery.filter(matchQuery);
//2.3 查询价格在:2000-3000
RangeQueryBuilder rangeQuery = QueryBuilders.rangeQuery("price");
rangeQuery.gte(2000);
rangeQuery.lte(3000);
boolQuery.filter(rangeQuery);
sourceBuilder.query(boolQuery);
2.11 聚合查询-脚本
•指标聚合:相当于MySQL的聚合函数。max、min、avg、sum等
•桶聚合:相当于MySQL的 group by 操作。不要对text类型的数据进行分组,会失败。
# 聚合查询
# 指标聚合 聚合函数
GET goods/_search
{
"query": {
"match": {
"title": "手机"
}
},
"aggs": {
"max_price": {
"max": {
"field": "price"
}
}
}
}
# 桶聚合 分组
GET goods/_search
{
"query": {
"match": {
"title": "手机"
}
},
"aggs": {
"goods_brands": {
"terms": {
"field": "brandName",
"size": 100
}
}
}
}
2.12 聚合查询-JavaAPI
聚合查询:桶聚合,分组查询
- 查询title包含手机的数据
- 查询品牌列表
/**
* 聚合查询:桶聚合,分组查询
* 1. 查询title包含手机的数据
* 2. 查询品牌列表
*/
@Test
public void testAggQuery() throws IOException {
SearchRequest searchRequest=new SearchRequest("goods");
SearchSourceBuilder sourceBuilder=new SearchSourceBuilder();
//1. 查询title包含手机的数据
MatchQueryBuilder queryBuilder = QueryBuilders.matchQuery("title", "手机");
sourceBuilder.query(queryBuilder);
//2. 查询品牌列表 只展示前100条
AggregationBuilder aggregation=AggregationBuilders.terms("goods_brands").field("brandName").size(100);
sourceBuilder.aggregation(aggregation);
searchRequest.source(sourceBuilder);
SearchResponse searchResponse = client.search(searchRequest, RequestOptions.DEFAULT);
//7. 获取命中对象 SearchHits
SearchHits hits = searchResponse.getHits();
//7.1 获取总记录数
Long total= hits.getTotalHits().value;
System.out.println("总数:"+total);
// aggregations 对象
Aggregations aggregations = searchResponse.getAggregations();
//将aggregations 转化为map
Map<String, Aggregation> aggregationMap = aggregations.asMap();
//通过key获取goods_brands 对象 使用Aggregation的子类接收 buckets属性在Terms接口中体现
// Aggregation goods_brands1 = aggregationMap.get("goods_brands");
Terms goods_brands =(Terms) aggregationMap.get("goods_brands");
//获取buckets 数组集合
List<? extends Terms.Bucket> buckets = goods_brands.getBuckets();
Map<String,Object>map=new HashMap<>();
//遍历buckets key 属性名,doc_count 统计聚合数
for (Terms.Bucket bucket : buckets) {
System.out.println(bucket.getKey());
map.put(bucket.getKeyAsString(),bucket.getDocCount());
}
System.out.println(map);
}
2.13 高亮查询-脚本
高亮三要素:
•高亮字段
•前缀
•后缀
默认前后缀 :em
<em>手机</em>
GET goods/_search
{
"query": {
"match": {
"title": "电视"
}
},
"highlight": {
"fields": {
"title": {
"pre_tags": "<font color='red'>",
"post_tags": "</font>"
}
}
}
}
2.14 高亮查询-JavaAPI
实施步骤:
高亮查询:
1. 设置高亮
高亮字段
前缀
后缀
2. 将高亮了的字段数据,替换原有数据
/**
*
* 高亮查询:
* 1. 设置高亮
* * 高亮字段
* * 前缀
* * 后缀
* 2. 将高亮了的字段数据,替换原有数据
*/
@Test
public void testHighLightQuery() throws IOException {
SearchRequest searchRequest = new SearchRequest("goods");
SearchSourceBuilder sourceBulider = new SearchSourceBuilder();
// 1. 查询title包含手机的数据
MatchQueryBuilder query = QueryBuilders.matchQuery("title", "手机");
sourceBulider.query(query);
//设置高亮
HighlightBuilder highlighter = new HighlightBuilder();
//设置三要素
highlighter.field("title");
//设置前后缀标签
highlighter.preTags("<font color='red'>");
highlighter.postTags("</font>");
//加载已经设置好的高亮配置
sourceBulider.highlighter(highlighter);
searchRequest.source(sourceBulider);
SearchResponse searchResponse = client.search(searchRequest, RequestOptions.DEFAULT);
SearchHits searchHits = searchResponse.getHits();
//获取记录数
long value = searchHits.getTotalHits().value;
System.out.println("总记录数:"+value);
List<Goods> goodsList = new ArrayList<>();
SearchHit[] hits = searchHits.getHits();
for (SearchHit hit : hits) {
String sourceAsString = hit.getSourceAsString();
//转为java
Goods goods = JSON.parseObject(sourceAsString, Goods.class);
// 获取高亮结果,替换goods中的title
Map<String, HighlightField> highlightFields = hit.getHighlightFields();
HighlightField HighlightField = highlightFields.get("title");
Text[] fragments = HighlightField.fragments();
//highlight title替换 替换goods中的title
goods.setTitle(fragments[0].toString());
goodsList.add(goods);
}
for (Goods goods : goodsList) {
System.out.println(goods);
}
}
2.15 重建索引&索引别名
#查询别名 默认别名无法查看,默认别名同索引名
GET goods/_alias/
#结果
{
"goods" : {
"aliases" : { }
}
}
1.新建student_index_v1索引
# -------重建索引-----------
# 新建student_index_v1。索引名称必须全部小写
PUT student_index_v1
{
"mappings": {
"properties": {
"birthday":{
"type": "date"
}
}
}
}
#查看 student_index_v1 结构
GET student_index_v1
#添加数据
PUT student_index_v1/_doc/1
{
"birthday":"1999-11-11"
}
#查看数据
GET student_index_v1/_search
#添加数据
PUT student_index_v1/_doc/1
{
"birthday":"1999年11月11日"
}
2.重建索引:将student_index_v1 数据拷贝到 student_index_v2
# 业务变更了,需要改变birthday字段的类型为text
# 1. 创建新的索引 student_index_v2
# 2. 将student_index_v1 数据拷贝到 student_index_v2
# 创建新的索引 student_index_v2
PUT student_index_v2
{
"mappings": {
"properties": {
"birthday":{
"type": "text"
}
}
}
}
# 将student_index_v1 数据拷贝到 student_index_v2
# _reindex 拷贝数据
POST _reindex
{
"source": {
"index": "student_index_v1"
},
"dest": {
"index": "student_index_v2"
}
}
GET student_index_v2/_search
PUT student_index_v2/_doc/2
{
"birthday":"1999年11月11日"
}
3.创建索引库别名:
注意:DELETE student_index_v1 这一操作将删除student_index_v1索引库,并不是删除别名
# 思考: 现在java代码中操作es,还是使用的实student_index_v1老的索引名称。
# 1. 改代码(不推荐)
# 2. 索引别名(推荐)
# 步骤:
# 0. 先删除student_index_v1
# 1. 给student_index_v2起个别名 student_index_v1
# 先删除student_index_v1
#DELETE student_index_v1 这一操作将删除student_index_v1索引库
#索引库默认的别名与索引库同名,无法删除
# 给student_index_v1起个别名 student_index_v11
POST student_index_v2/_alias/student_index_v11
#测试删除命令
POST /_aliases
{
"actions": [
{"remove": {"index": "student_index_v1", "alias": "student_index_v11"}}
]
}
# 给student_index_v2起个别名 student_index_v1
POST student_index_v2/_alias/student_index_v1
#查询别名
GET goods/_alias/
GET student_index_v1/_search
GET student_index_v2/_search
3 ES复杂聚合查询
3.1 统计字段总数
@Override
public PersonStaticDTO getUserAgg(UserQuery userQuery) {
SearchQuery query = new NativeSearchQueryBuilder()
.withQuery(userMapper.getUserQueryBuilder(userQuery))
//统计这个字段的总数
.addAggregation(AggregationBuilders.count("userCount").field("accountId"))
.build();
AggregatedPage<User> page = elasticsearchTemplate.queryForPage(query, User.class);
//之后获得这个统计对象 进行赋值
ValueCount userCount = (ValueCount) page.getAggregation("userCount");
PersonStaticDTO personStaticDTO = new PersonStaticDTO();
personStaticDTO.setCount(((Double)userCount.value()).intValue());
return personStaticDTO;
}
3.2 枚举分组统计总数
@Override
public DeviceRepairCountDTO getRepairAgg(OperatorDeviceRepairQueryDTO operatorDeviceRepairQueryDTO) {
SearchQuery query = new NativeSearchQueryBuilder()
.withQuery(RepairQueryUtils.getRepairQueryBuilder(operatorDeviceRepairQueryDTO))
//通过状态进行分组
.addAggregation(AggregationBuilders.filter("Pending", QueryBuilders.termQuery("repairStatus", RepairStatus.Pending.ordinal())))
.addAggregation(AggregationBuilders.filter("Processing", QueryBuilders.termQuery("repairStatus", RepairStatus.Processing.ordinal())))
.withPageable(PageRequest.of(0, 1))
.build();
AggregatedPage<DeviceRepairRecordDoc> page = elasticsearchTemplate.queryForPage(query, DeviceRepairRecordDoc.class);
//获得分组对象
InternalFilter repairPending = (InternalFilter) page.getAggregation("Pending");
InternalFilter repairProcessing = (InternalFilter) page.getAggregation("Processing");
//接收总数
DeviceRepairCountDTO deviceRepairCountDTO = new DeviceRepairCountDTO();
deviceRepairCountDTO.setPendingCount(repairPending.getDocCount());
deviceRepairCountDTO.setProcessCount(repairProcessing.getDocCount());
deviceRepairCountDTO.setCount(page.getTotalElements());
return deviceRepairCountDTO;
}
3.3 重写分页规则
@Override
public Page<ConsumptionBillDTO> getConsumptionListByAccount(Pageable pageable, Long accountId) {
//重新书写分页顺序条件
Sort sort = pageable.getSort().and(Sort.by(Sort.Direction.DESC, "createdDate"));
pageable = PageRequest.of(pageable.getPageNumber(), pageable.getPageSize(), sort);
//BoolQueryBuilder查询必须匹配某个字段
BoolQueryBuilder queryBuilder = QueryBuilders.boolQuery();
if (accountId != null) {
queryBuilder.must(QueryBuilders.termQuery("accountId", accountId));
}
SearchQuery query = new NativeSearchQueryBuilder()
.withQuery(queryBuilder)
.withPageable(pageable)
.build();
//分页查询
Page<OrderIdxDoc> page = orderIdxRepository.search(query);
List<OrderIdxDoc> list = page.getContent();
//list.stream().map 将一个OrderIdxDoc对象之后封装为另一个对象,简化遍历的操作
List<ConsumptionBillDTO> retList = list.stream().map(orderIdx -> orderMapper.to(orderIdx)).collect(Collectors.toList());
return new PageImpl(retList, pageable, page.getTotalElements());
}
3.4 去重总数和范围
/*
* 获取设备消耗指标
* */
public DeviceConsumeMetric getDeviceConsumeMetric(long deviceId, DeviceQuery deviceQuery) {
//布尔查询
BoolQueryBuilder queryBuilder = QueryBuilders.boolQuery();
//匹配 deviceId后面的这个属性值是否和这个字段里面的值匹配 匹配到就过滤
queryBuilder.must(QueryBuilders.matchQuery("deviceId", deviceId));
//开始时间,继续放入搜索
if (deviceQuery.getStartDate() != null) {
queryBuilder.must(QueryBuilders.rangeQuery("createdDate").gte(deviceQuery.getStartDate()));
}
//结束时间
if (deviceQuery.getEndDate() != null) {
queryBuilder.must(QueryBuilders.rangeQuery("createdDate").lte(deviceQuery.getEndDate()));
}
//本地查询方法
SearchQuery searchQuery = new NativeSearchQueryBuilder()
//将上述查询条件加入
.withQuery(queryBuilder)
//聚合总数
.addAggregation(AggregationBuilders.sum("amount").field("amount"))
.addAggregation(AggregationBuilders.cardinality("person").field("accountId"))
.build();
//之后获得分组后的对象
AggregatedPage<ConsumeRecordDoc> terms = elasticsearchTemplate.queryForPage(searchQuery, ConsumeRecordDoc.class);
//之后得到Sum类
Sum sumAmount = (InternalSum) terms.getAggregation("amount");
//去重
InternalCardinality terms1 = (InternalCardinality) terms.getAggregation("person");
DeviceConsumeMetric m = new DeviceConsumeMetric();
m.setAmount(BigDecimal.valueOf(sumAmount.getValue()));
m.setUserCount(Math.toIntExact(terms1.getValue()));
m.setCount(Math.toIntExact(terms.getTotalElements()));
return m;
}
3.5 提高阈值防止数据没有全部查到
public Page<DeviceConsumeInfo> getConsumeUserCountInfo(DeviceQuery deviceQuery, Pageable pageable) {
int size = pageable.getPageSize() * ((pageable.getPageNumber()) + 1);
int shard_size = (int) (size * 1.5) + 10;
SearchQuery query = new NativeSearchQueryBuilder()
.withQuery(getFilterdDevice(deviceQuery))
.addAggregation(AggregationBuilders.terms("deviceCount").size(size).shardSize(shard_size).field("deviceId")
.subAggregation(AggregationBuilders.cardinality("userCount").field("accountId").precisionThreshold(40000))
.size(Integer.MAX_VALUE)
)
.withPageable(pageable).withTrackScores(true)
.build();
AggregatedPage<ConsumeRecordDoc> page = elasticsearchTemplate.queryForPage(query, ConsumeRecordDoc.class);
Terms terms = (Terms) page.getAggregation("deviceCount");
long total = terms.getBuckets().size();
List<DeviceConsumeInfo> ret = terms.getBuckets().stream()
.skip(pageable.getPageSize() * pageable.getPageNumber())
.limit(pageable.getPageSize())
.map(x -> {
DeviceConsumeInfo info = new DeviceConsumeInfo();
long devId = (long) x.getKeyAsNumber();
InternalCardinality cardinality = x.getAggregations().get("userCount");
long userCount = cardinality.getValue();
info.setUserCount(userCount);
info.setDeviceId(devId);
return info;
})
.collect(Collectors.toList());
return new PageImpl(ret, pageable, total);
}