大数据Spark机器学习


1 冒泡排序

  • 按照一定得顺序执行某一些操作, 最终实现某些功能
  • 演绎法
function bubbleSort(arr) {
    var len = arr.length;
    for (var i = 0; i < len; i++) {
        for (var j = 0; j < len - 1 - i; j++) {
            if (arr[j] > arr[j+1]) {       // 相邻元素两两对比
                var temp = arr[j+1];       // 元素交换
                arr[j+1] = arr[j];
                arr[j] = temp;
            }
        }
    }
    return arr;
}

在这里插入图片描述

2 机器学习

  • 归纳法
  • 步骤
    1. 处理数据, 生成数据集
    2. 使用学习型算法, 从数据集中学习规律, 这个规律就是模型

在这里插入图片描述

在这里插入图片描述

3 什么是机器学习

两类

  • 监督学习
  • 无监督学习

监督式机器学习的定义如下

  • 机器学习系统通过学习如何组合输入信息来对从未见过的数据做出有用的预测

标签

标签是我们要预测的事物, 即简单线性回归中的 y 变量. 标签可以是小麦未来的价格, 图片中显示的动物品种, 音频剪辑的含义或任何事物

特征

特征是输入变量, 即简单线性回归中的 x 变量. 简单的机器学习项目可能会使用单个特征, 而比较复杂的机器学习项目可能会使用数百万个特征, 按如下方式指定:

x 1 , x 2 , . . . x N x1,x2,...xN x1,x2,...xN

样本

样本是指数据的特定实例: x

  • 有标签样本
  • 无标签样本

有标签样本同时包含特征和标签

labeled examples: {features, label}: (x, y)

我们使用有标签样本来训练模型

  • 表就是数据集
  • 列是特征
  • 标签就是要预测的结果
  • 每一行数据叫做样本
住房平均年龄房间数卧室数房屋价格
155612128366900
197650190180100
1772017485700
14150133773400
20145432665500

无标签样本包含特征, 但不包含标签

unlabeled examples: {features, ?}: (x, ?)

我们要预测无标签样本的标签

住房平均年龄房间卧室数
421686361
341226180
331077271

模型

模型定义了特征与标签之间的关系. 例如, 垃圾邮件检测模型可能会将某些特征与标签 “垃圾邮件” 紧密联系起来.

  • 训练是指创建或学习模型. 也就是说, 向模型展示有标签样本, 让模型逐渐学习特征与标签之间的关系
  • 预测是指将训练后的模型应用于无标签样本

回归与分类

回归模型可预测连续值. 例如, 回归模型做出的预测可回答如下问题

  • 加利福尼亚州一栋房产的价值是多少?
  • 用户点击此广告的概率是多少?

分类模型可预测离散值. 例如, 分类模型做出的预测可回答如下问题

  • 某个指定电子邮件是垃圾邮件还是非垃圾邮件?
  • 这是一张狗, 猫还是仓鼠图片?

个人理解

  • 机器学习非常难, 因为机器学习是一个学术学科, 不是一个工程学科
  • 机器学习难以入门
  • 机器学习掌握比较深的人并不是搞开发的
  • 不应该把精力放在对算法和理论的研究上, 因为一般的功能和任务, 现在的算法都能很好的完成, 掌握常见算法的使用方式即可
  • 更重要的是, 了解数据如何处理, 如何进行特征工程
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

赵广陆

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值