代码随想录|动态规划|42最长连续递增子系列

leetcode:674. 最长连续递增序列 - 力扣(LeetCode)

题目

给定一个未经排序的整数数组,找到最长且 连续递增的子序列,并返回该序列的长度。

连续递增的子序列 可以由两个下标 l 和 r(l < r)确定,如果对于每个 l <= i < r,都有 nums[i] < nums[i + 1] ,那么子序列 [nums[l], nums[l + 1], ..., nums[r - 1], nums[r]] 就是连续递增子序列。

示例 1:

  • 输入:nums = [1,3,5,4,7]
  • 输出:3
  • 解释:最长连续递增序列是 [1,3,5], 长度为3。尽管 [1,3,5,7] 也是升序的子序列, 但它不是连续的,因为 5 和 7 在原数组里被 4 隔开。

示例 2:

  • 输入:nums = [2,2,2,2,2]
  • 输出:1
  • 解释:最长连续递增序列是 [2], 长度为1。

提示:

  • 0 <= nums.length <= 10^4
  • -10^9 <= nums[i] <= 10^9

思路

跟上面一道题的区别在于,这里是连续的,也就是如果dp[i]>dp[i-1]

那么dp[i]=dp[i-1]+1

dp数组表示以下标i为结尾(包括下标i)的连续递增的子序列长度为dp[i]

代码如下:

class Solution
{
public:
    int findLengthOfLCIS(vector<int> &nums)
    {
        int len = nums.size();
        if (len == 1)
        {
            return 1;
        }
        vector<int> dp(len, 1);
        int result = 1;
        for (int i = 1; i < len; i++)
        {
            if (nums[i] > nums[i - 1])
            {
                dp[i] = dp[i - 1] + 1;
            }
            if (dp[i] > result)
            {
                result = dp[i];
            }
        }
        return result;
    }
};

总结

连续跟不连续的思想是一样的,连续更加简单。

参考资料

 代码随想录

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值