TensorFlow 2.1.0 使用 TFRecord 转存与读取图片

本文介绍了在TensorFlow 2.1.0中,如何利用TFRecord解决使用Python generator加载图像数据时速度慢、GPU利用率低的问题。通过将图像数据转换为TFRecord格式,提高了数据读取效率,提升了训练速度。
摘要由CSDN通过智能技术生成

前言

当 NLP 玩家遇到一个 CV 图像分类的任务时,老实的说,我是有点懵逼的。。。

任务目标是,训练一个层数较少,结构较为简单的图像分类模型,使用其最后一层隐藏层输出,作为特征向量来表征图像。

之前都是使用 Keras 较多,于是本次准备借着这个简单的任务上手 TensorFlow 2.1 。


数据加载

Python generator 出现的问题

TensorFlow 2.1 自带的 tf.data.Dataset 处理训练数据十分好用,并且自带 shuffle,repeat,和划分 batch 的方法。可以通过python generator, numpy list, Tensor slices 等数据结构直接构成 Dataset。

我训练使用的数据是文档中的插图,5个类别共 10w 张。

起初我使用的方法是:构造一个 python generator,训练时,使用 tf 自带的 tf.io.read_file() 和 tf.image.decode_jpeg() 方法从磁盘中读取数据,再使用 tf.data.Dataset.from_generator 生成数据集。

但训练时发现这样的数据处理有着很大的问题:受制于generator 的读取数据速度,batch 数据生成的速度跟不上 GPU 的训练速度࿰

评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值