斜率优化学习笔记

斜率优化学习笔记
发现自己傻傻分不清斜率优化和决策单调性→_→,被一些博客误导了。。于是总结一下。萌新们可以先写写[hnoi2008]玩具装箱,并不难。

相信有心想学习斜率优化的同志们一定自己摸索着写过[hnoi2008]玩具装箱这道题吧,我刚开始学习斜率优化的时候,也是写了这个,然后似懂非懂的发现,好像斜率优化就是先证明决策单调性,然后再用单调队列维护一下什么的,这不就是套个模板的东西吗→_→。

对于某一类型的dp方程 f [ i ] = M i n ( a [ i ] ∗ b [ j ] + c [ j ] + d [ i ] ) f[i]=Min(a[i]∗b[j]+c[j]+d[i]) f[i]=Min(a[i]b[j]+c[j]+d[i])

其中 a [ x ] , b [ x ] , c [ x ] , d [ x ] a[x],b[x],c[x],d[x] a[x],b[x],c[x],d[x]是关于x的函数,且b单增。——————【1】

按照一贯的套路,先数学归纳法证明决策单调性。

1.归纳假设:

假设有i前两个决策点 j , k ( j &lt; k ) j,k(j&lt;k) j,k(j<k),且 k k k的决策要比 j j j好,即:
    a [ i ] ∗ b [ j ] + c [ j ] + d [ i ] &gt; = a [ i ] ∗ b [ k ] + c [ k ] + d [ i ] , j &lt; k a[i]∗b[j]+c[j]+d[i]&gt;=a[i]∗b[k]+c[k]+d[i],j&lt;k a[i]b[j]+c[j]+d[i]>=a[i]b[k]+c[k]+d[i]j<k——————【2】

2.归纳推理:

此时后面有状态i+1,这里我们为了简单起见,不妨设 a [ i + 1 ] = a [ i ] − v , v &gt; 0 a[i+1]=a[i]−v,v&gt;0 a[i+1]=a[i]v,v>0,也就是 a a a单调递减。
即证: a [ i + 1 ] ∗ b [ j ] + c [ j ] + d [ i + 1 ] &gt; = a [ i + 1 ] ∗ b [ k ] + c [ k ] + d [ i + 1 ] a[i+1]∗b[j]+c[j]+d[i+1]&gt;=a[i+1]∗b[k]+c[k]+d[i+1] a[i+1]b[j]+c[j]+d[i+1]>=a[i+1]b[k]+c[k]+d[i+1]

( a [ i ] − v ) ∗ b [ j ] + c [ j ] + d [ i + 1 ] &gt; = ( a [ i ] − v ) ∗ b [ k ] + c [ k ] + d [ i + 1 ] (a[i]−v)∗b[j]+c[j]+d[i+1]&gt;=(a[i]−v)∗b[k]+c[k]+d[i+1] (a[i]v)b[j]+c[j]+d[i+1]>=(a[i]v)b[k]+c[k]+d[i+1]

化简得: a [ i ] ∗ b [ j ] + v ∗ b [ k ] + c [ j ] &gt; = a [ i ] ∗ b [ k ] + v ∗ b [ j ] + c [ k ] a[i]∗b[j]+v∗b[k]+c[j]&gt;=a[i]∗b[k]+v∗b[j]+c[k] a[i]b[j]+vb[k]+c[j]>=a[i]b[k]+vb[j]+c[k]

由【2】得: a [ i ] ∗ b [ j ] + c [ j ] &gt; = a [ i ] ∗ b [ k ] + c [ k ] a[i]∗b[j]+c[j]&gt;=a[i]∗b[k]+c[k] a[i]b[j]+c[j]>=a[i]b[k]+c[k]
由【1】得: b [ k ] &gt; b [ j ] b[k]&gt;b[j] b[k]>b[j]
∵ v &gt; 0 ∵v&gt;0 v>0
∴ v ∗ b [ k ] &gt; = v ∗ b [ j ] ∴v∗b[k]&gt;=v∗b[j] vb[k]>=vb[j]
得证
  所以,决策单调性是存在的。我们将由决策单调性得出的式子展开,化成斜率式:

a [ i ] ∗ b [ j ] + c [ j ] + d [ i ] &gt; = a [ i ] ∗ b [ k ] + c [ k ] + d [ i ] , j &lt; k a[i]∗b[j]+c[j]+d[i]&gt;=a[i]∗b[k]+c[k]+d[i],j&lt;k a[i]b[j]+c[j]+d[i]>=a[i]b[k]+c[k]+d[i]j<k

− a [ i ] &gt; = c [ k ] − c [ j ] b [ k ] − b [ j ] −a[i]&gt;=\cfrac{c[k]−c[j]}{b[k]−b[j]} a[i]>=b[k]b[j]c[k]c[j]

记斜率
s l o p e ( i , j ) = c [ k ] − c [ j ] b [ k ] − b [ j ] slope(i,j)=\cfrac{c[k]−c[j]}{b[k]−b[j]} slope(i,j)=b[k]b[j]c[k]c[j]

然后发现这个东西很符合单调队列的尿性:

− a [ i ] &gt; = s l o p e ( q [ l ] , q [ l + 1 ] ) −a[i]&gt;=slope(q[l],q[l+1]) a[i]>=slope(q[l],q[l+1])。因为 q [ l ] q[l] q[l] q [ l + 1 ] q[l+1] q[l+1]之前加入,那么显然这个式子就表示 q [ l ] q[l] q[l]决策不如 q [ l + 1 ] q[l+1] q[l+1]优,我们可以将队首pop掉。
s l o p e ( q [ r − 1 ] , q [ r ] ) &gt; s l o p e ( q [ r ] , i ) slope(q[r−1],q[r])&gt;slope(q[r],i) slope(q[r1],q[r])>slope(q[r],i)。假设我们在后面存在一个 a [ t ] a[t] a[t]使得 − a [ t ] &gt; = s l o p e ( q [ r − 1 ] , q [ r ] ) −a[t]&gt;=slope(q[r−1],q[r]) a[t]>=slope(q[r1],q[r])那么等到pop了 q [ r − 1 ] q[r−1] q[r1]之后, − a [ t ] −a[t] a[t]一定也会>= s l o p e ( q [ r ] , i ) slope(q[r],i) slope(q[r],i) q [ r ] q[r] q[r]也会被pop。所以说 q [ r ] q[r] q[r]实际上是无用的,我们可以直接将它pop掉。
  问题就这样优化到了 O ( n ) O(n) O(n)

回顾一下我们之所以可以使用斜率优化,是因为这个dp方程具有决策单调性;否则我们推不出斜率式。之后我们将决策单调性的式子变形为斜率式,当满足斜率式的时候就表明前一个决策不如后一个决策优,一切都是围绕着决策单调性开展的,可以说决策单调性是斜率优化的前提。(那是真的么,欲知后事,请看下文)

现在我们换一个角度来考虑问题,刚刚是直接从”数“的角度进行了严谨的证明,那么我们现在从”形“的角度来意会。

dp方程:
f [ i ] = M i n ( a [ i ] ∗ b [ j ] + c [ j ] + d [ i ] ) f[i]=Min(a[i]∗b[j]+c[j]+d[i]) f[i]=Min(a[i]b[j]+c[j]+d[i]),b[j]单增

我们这里沿用上面“数”的条件:a单减,b单增。

移项:
− a [ i ] ∗ b [ j ] + f [ i ] = c [ j ] + d [ i ] −a[i]∗b[j]+f[i]=c[j]+d[i] a[i]b[j]+f[i]=c[j]+d[i]

是不是很像直线的斜截式: − a [ i ] −a[i] a[i]为直线的斜率;直线过点: ( b [ j ] , c [ j ] + d [ i ] ) (b[j],c[j]+d[i]) (b[j],c[j]+d[i]) f [ i ] f[i] f[i]即为直线在Y轴上的截距。

这里写图片描述
  
  可以看出,因为 f [ i ] f[i] f[i]要尽可能小,所以我们把之前小于 i i i j j j画在平面直角坐标系上,一如线性规划,把这条斜线自下往上平移时遇到的第一个点,即能使目前状态有最小值的点。于是我们需要维护一个下凸壳,把那些肯定不会贡献的点删掉。

这里写图片描述

我们用一个单调队列维护这个凸壳,因为要保证凸壳的下凸性,所以我们显然可以得到单调队列pop队尾的条件: s l o p e ( q [ r − 1 ] , q [ r ] ) &gt; s l o p e ( q [ r ] , i ) slope(q[r−1],q[r])&gt;slope(q[r],i) slope(q[r1],q[r])>slope(q[r],i)

考虑什么情况下pop队首元素(这里我们的讨论都是基于 f [ i ] f[i] f[i]取最小值的情况下的):

斜率 − a [ i ] −a[i] a[i]单增(因为 a a a单减)。 − a [ i ] &gt; s l o p e ( q [ l ] , q [ l + 1 ] ) −a[i]&gt;slope(q[l],q[l+1]) a[i]>slope(q[l],q[l+1])
斜率不单调。无法pop队首,二分或者三分查找队列中的最优解。二分做法:假设你要在上凸包上二分找斜率为k的切线。取中间的 m i d mid mid号点,如果 m i d + 1 mid+1 mid+1存在且与 m i d mid mid点的斜率小于 k k k,则 l = m i d + 1 l=mid+1 l=mid+1;如果 m i d − 1 mid−1 mid1存在且与 m i d mid mid点的斜率大于 k k k,则 r = m i d − 1 r=mid−1 r=mid1;如果上面两条都不满足,则 m i d mid mid就是切点。
  不错,你一定已经发现第一种情况所对应的维护方式不是跟之前所说“数”的单调队列维护方式一模一样吗,没错,其实这只是两种不同的解题方式所得出来的同样的结果。

两种方法各有优缺点吧,“形”的角度比较方便理解,对于更高深的cdq分治维护凸包可以比较清晰的了解。但是遇到复杂的dp方程以及决策单调性证明就得靠“数”了(比如国王饮水记),看情况使用吧。

之前说的决策单调性是斜率优化的基础这句话其实并不严谨,像这种从图形角度来求解的斜率优化就并没有用到决策单调性。想一想如果能证明决策单调性,那么一定就是对a和b的单调性有要求的,否则的话就是什么斜率不单调啦,在凸包上二分啦什么的。

这就是斜率优化啦。

小科普

回顾之前斜率优化的运用,它必须要有一个前提条件: b b b(横坐标)单增。而如果 b [ j ] b[j] b[j]不单调怎么办呢?还能不能用斜率优化呢?

答案是可以的,我们需要使用CDQ分治或者splay来解决这个问题。

总结

斜率单调暴力移指针
  斜率不单调二分找答案
  x坐标单调开单调队列
  x坐标不单调开平衡树|cdq分治

参考资料:

http://blog.sina.com.cn/s/blog_7a1746820100xztv.html

http://tieba.baidu.com/p/3671167462

http://blog.csdn.net/u010336344/article/details/52693858

This passage is made by MashiroSky.

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值