目录
1 地表温度(LST)
在遥感领域,地表温度(Land Surface Temperature, LST)是研究气候变化、城市热岛效应、农业干旱评估等方面的重要指标。本文将以Google Earth Engine(GEE)为工具,详细解析如何高效地批量下载MODIS地表温度数据,结合代码实现逐年地表温度指标的计算与导出。
地表温度(LST)是地表辐射热量的直接表现,MODIS数据产品(如MOD11A2
)为全球范围提供了高时间分辨率和高空间分辨率的LST观测数据。其优点包括:
高时空覆盖:
MODIS传感器提供连续的全球地表观测,时空分辨率适中(1公里)。
长期序列:
可获取2000年至今的地表温度数据,适用于长期趋势分析。
然而,由于数据量大、时间序列长,在传统本地化处理模式下会遇到存储与计算瓶颈。Google Earth Engine提供了云端计算平台,能够高效完成大范围、多年份地表温度数据的处理和下载。

2 数据准备
研究区定义:
ROI(Region of Interest)代表研究区域,可以通过矢量文件或手动绘制来定义。本文假设已经定义了一个研究区roi。
MODIS数据集:
MODIS LST数据集选择MOD11A2,其包含地表白天温度LST_Day_1km波段,数据分辨率为1公里。