目录
1 叶面积指数(LAI)
叶面积指数(Leaf Area Index,LAI)为单位土地面积绿色叶片的单面面积总和,即:叶面积指数=叶片总面积/土地面积,它与植被的密度、结构(单层或复层)、树木的生物学特性(分枝角、叶着生角、耐荫性等)和环境条件(光照、水分、土壤营养状况)有关,是表示植被利用光能状况和冠层结构的一个综合指标。叶面积指数的测定有直接方法、间接方法。由于直接方法具有一定的破坏性,耗时耗力,并且无法反映大面积、大范围内的植被LAI分布情况,间接测定方法尤其是其中的遥感法,以其具有的快速、实时、大面积、不受植被类型影响等优势,成为应用最为广泛的LAI监测手段。随着遥感技术的飞速发展,越来越多高时间分辨率、高空间分辨率、多光谱、高光谱遥感卫星数据实现了LAI监测。
叶面积指数(Leaf Area Index,LAI)是衡量植被冠层结构的核心指标之一。它代表了单位地表面积上所有叶片的总面积倍数,对光合作用、蒸腾作用、碳循环、降水截获等生物物理过程至关重要。作为环境研究、气候变化监测以及生态恢复等领域的基础数据,LAI为我们提供了理解地球植被生长状态和生态健康的重要依据。
2 完整代码
var roi = table;
var year_list=ee.List.sequence(2000,2019);
year_list=year_list.map(function(num){
var time=ee.Date.fromYMD(num, 1, 1)
//MOD15A2H产品下的LAI产品,8天/幅,分辨率为500米
var year_image=ee.ImageCollection("MODIS/006/MOD15A2H")
.filterDate(time,ee.Date(time).advance(1,'year'))
.max();
var year_LAI=year_image.select('Lai_500m');
return year_LAI.addBands(ee.Image.constant(num).toFloat());
}
)
var img_collection=ee.ImageCollection.fromImages(year_list);
var linearFit = img_collection.select(['constant', 'Lai_500m'])
.reduce(ee.Reducer.linearFit());
print(year_list)
print(img_collection)
var trendVis = {
min: 0,
max: 1,
palette: [
"f7fcf5","e5f5e0","c7e9c0","a1d99b","74c476","41ab5d","238b45","006d2c","00441b"
],
};
var batch = require('users/fitoprincipe/geetools:batch')//下载所需的调用接口
batch.Download.ImageCollection.toDrive(img_collection,"result", {
scale: 500,
region: roi, //研究区域
maxPixels:34e10, //此处值设置大一些,防止溢出
type:"int16" });
Map.centerObject(roi);
Map.addLayer(linearFit.select('scale').clip(roi),trendVis);
3 运行结果

