目录
在生态学和环境科学领域,植被的健康状况是评估生态系统稳定性和功能的关键指标之一。而叶绿素含量和冠层水分含量作为反映植被生理状态的重要参数,一直是遥感监测的核心目标。接下来,将通过Google Earth Engine(GEE)平台,分享如何利用Sentinel-2卫星数据反演叶绿素含量和冠层水分含量,并通过代码实现这一过程。
1 数据加载与预处理
在进行生态参数反演之前,需要加载并预处理卫星数据。这里选择了Sentinel-2卫星的“COPERNICUS/S2_SR_HARMONIZED”数据集,它提供了高质量的地表反射率产品,具有10米至60米的空间分辨率,非常适合植被监测。
/******************** 数据加载与预处理 ********************/
var s2 = ee.ImageCollection("COPERNICUS/S2_SR_HARMONIZED")
// 设置时间范围
.filterDate('2023-01-01', '2023-11-30')
// 限定研究区域
.filterBounds(roi)
// 筛选云量小于20%的影像
.filter(ee.Filter.lt('CLOUDY_PIXEL_PERCENTAGE', 20))
// 波段名称标准化
.map(function (img) {
return img.rename([
'B1', 'B2', 'B3', 'B4', 'B5', 'B6', 'B7',
'B8', 'B8A', 'B9', 'B11', 'B12',
'AOT', 'WVP', 'SCL', 'TCI_R', 'TCI_G', 'TCI_B',
'MSK_CLDPRB', 'MSK_SNWPRB', 'QA10', 'QA20', 'QA60',
'MSK_CLASSI_OPAQUE', 'MSK_CLASSI_CIRRUS', 'MSK_CLASSI_SNOW_ICE'
]);
})
// 计算中值合成影像
.median()
// 裁剪至研究区域
.clip(roi);
关键步骤解析:
-
时间范围筛选:通过
filterDate
方法,选择了2023年1月1日至11月30日的数据。您可以根据研究需求调整时间范围。 -
云量筛选:通过
filter
方法结合ee.Filter.lt
,剔除了云量超过20%的影像,以减少云层对分析结果的干扰。 -
波段名称标准化:Sentinel-2数据的波段名称通常以“B04”、“B05”等形式出现。为了方便后续计算,将波段名称统一更正为“B4”、“B5”等。
-
中值合成:通过
median
方法,计算了中值合成影像,以减少噪声和异常值的影响。 -
裁剪至研究区域:使用
clip
方法将影像裁剪至感兴趣区域(roi
)