1. 维度灾难
在数据挖掘中,特征工程是极其重要的一环,不断寻找特征的过程,就是不断给数据增加维度。通常特征更丰富,算法就更容易捕获数据之间的模式。
1.1 计算量
维度高了之后,计算开始变得非常困难;
1.2 特征干扰
同时特征之间会相互干扰,而不是相互独立,从而影响算法性能;
1.3 过拟合
还有一个很重要的原因是维度高了之后,样本在空间的分布会变得很稀疏,这容易导致过拟合,比如决策树的叶子节点上样本太少。
2. 常见降维算法
将样本从高维特征空间映射到低维特征空间;主要参照sklearn - dimension reduce:
1)MDS - multiple dimension scale,多维度缩放;
2)PCA - 主成分分析及其变体,minibatch PCA,kernel PCA,sparse PCA等;
3)SVD - 奇异值分解及其变体,SVD++等等;
4)LSA - 潜在语义分析(本质上是SVD分解);
5)字典学习与稀疏编码;
6)NMF - 非负矩阵分解;
7)LDA - 线性判别分析;
8)factor analysis - 因子分析;
9)ICA - independent component analysis, 独立成分分析
3. 算法性能度量
1)比较降维前后,分类器的性能;
2)降维到三维及以下,可视化。