题目大意
有个恒星系,有n个行星,其中第i个以时间t_i为周期绕恒星做圆周运动,问行星们在过恒星的同一条直线上的时刻之间的间隔。
N<=1000,t_i<=10000
分析
首先要注意到行星可以在圆的两边。
然后所有行星都过同一条直线可以看成任取i,i和i+1在同一直线上。
那么通过一波计算,可以得出i和i+1的时间间隔,是一个分数,记为ai/bi。
接着我们要做的就是把所有分数弄一个最小公倍数就好了,即分别乘上某个整数,使得所有分数相等。
猜结论,答案为lcm(ai)/gcd(bi)。只需要证明,答案除以了某个ai/bi后,为整数,任取i,除出来的整数都互质即可。
注意t有可能相同,还有数据范围。
萎代码
没打高精度,懒得打了····
#include <algorithm>
#include <iostream>
#include <cstring>
#include <cstdio>
#include <cmath>
using namespace std;
typedef double db;
typedef long long ll;
#define fo(i,j,k) for(i=j;i<=k;i++)
#define fd(i,j,k) for(i=j;i>=k;i--)
const int N=10005;
ll a[N],b[N],c[N],t[N],lc,gc,i,n,m;
ll gcd(ll a,ll b)
{
if (!b) return a;
return gcd(b,a%b);
}
int main()
{
scanf("%lld",&n);
fo(i,1,n) scanf("%lld",c+i);
sort(c+1,c+1+n);
fo(i,1,n-1)
if (c[i]!=c[i+1])
t[++m]=c[i];
n=m;
fo(i,1,n-1)
{
a[i]=t[i]*t[i+1];
b[i]=2*abs(t[i+1]-t[i]);
gc=gcd(a[i],b[i]);
a[i]/=gc;
b[i]/=gc;
}
lc=a[1];
gc=b[1];
fo(i,2,n-1)
{
lc=lc*a[i]/gcd(lc,a[i]);
gc=gcd(gc,b[i]);
int kx=gcd(lc,gc);
lc/=kx;
gc/=kx;
}
printf("%lld %lld",lc,gc);
}