LCA的RMQ求法

目的

老是打错,现在系统搞一遍。

例题

这里写图片描述

分析

经典的主席树,要找LCA。

LCA

首先每访问一次一个点,dfn++,设le[x]为点x最小dfn,ref[y]为dfn=y的时候在哪个点上。f[y][x]为dfn为x开始,长度为 1<<y 的一段最小dis的点的编号。
注意搞f的时候每次要 i=1 dfn(1<<(j)) ,爆掉可能有问题,然后 1<<j 要打括号,+-是优先于<<的。这东西调了我30min。

代码

#include<cstdio>
#include<algorithm>
#include<cstring>
#include<cmath>
using namespace std;
#define fo(i,j,k) for(i=j;i<=k;i++)
#define fd(i,j,k) for(i=j;i>=k;i--)
typedef long long ll;
const int N=600005;
struct rec1
{
    int val,l,r;
}tr[N*10];
struct rec
{
    int x,y;
}B[N];
int st[N],f[20][N],dis[N],le[N],ri[N],dfn,ref[N],rev[N],t1,t2,x,y,z,c1,c2,c3,zz,n,m,q,i,j,a[N],Log[N],lastans,lc,fa[N];
int tt,b[N],next[N],first[N];
int k1,k2,k3;
void cr(int x,int y)
{
    tt++;
    b[tt]=y;
    next[tt]=first[x];
    first[x]=tt;
}
bool cmp(rec a,rec b)
{
    return a.x<b.x;
}
void lsh()
{
    fo(i,1,n) 
    {
        B[i].x=a[i];
        B[i].y=i;
    }
    sort(B+1,B+1+n,cmp);
    t1=0;
    B[0].x=-1;
    fo(i,1,n)
    {
        if (B[i].x!=B[i-1].x)
            rev[++t1]=B[i].x;
        a[B[i].y]=t1;
    }
    rev[t1+1]=1e9;
    rev[0]=0;
}
int disperse(int z)
{
    int l=1,r=t1+1,mid=0;
    while (l<r)
    {
        mid=(r+l)/2;
        if (rev[mid]>z) r=mid;
        else l=mid+1;
        if (rev[mid]==z) return mid;
    }
    return l;
}
void change(int x_1,int x_2,int l,int r,int pos)
{
    int m=(l+r)/2;
    if (l==r)
    {
        tr[x_1].val=tr[x_2].val+1;
        return ;
    }
    if (m>=pos)
    {
        tr[x_1].l=++t2;
        tr[x_1].r=tr[x_2].r;
        change(t2,tr[x_2].l,l,m,pos);
    }
    else
    {
        tr[x_1].r=++t2;
        tr[x_1].l=tr[x_2].l;
        change(t2,tr[x_2].r,m+1,r,pos);
    }
    tr[x_1].val=tr[tr[x_1].l].val+tr[tr[x_1].r].val;
}
int get(int x,int l,int r,int i,int j)
{ 
    if (i>j) return 0;
    int m=(l+r)/2;
    if (l==i&&r==j) 
        return tr[x].val;
    if (m>=j) 
        return get(tr[x].l,l,m,i,j);
    else if (m<i) 
        return get(tr[x].r,m+1,r,i,j);
    else return get(tr[x].l,l,m,i,m)+get(tr[x].r,m+1,r,m+1,j);
}
void dfs(int x,int y)
{
    fa[x]=y;
    st[x]=++t2;
    change(st[x],st[y],1,t1,a[x]);
    dis[x]=dis[y]+1;
    dfn++;
    ref[dfn]=x;
    le[x]=dfn;
    for(int p=first[x];p;p=next[p])
        if (b[p]!=y)
        {
            dfs(b[p],x);
            dfn++;
            ref[dfn]=x;
        }
    ri[x]=dfn;
}
int mi(int x,int y)
{
    if (dis[x]<dis[y]||!y) return x;
    return y;
}
void make_ST()
{
    fo(i,1,dfn) f[0][i]=ref[i];
    fo(j,1,Log[dfn])
        fo(i,1,dfn)
        {
            if (i+(1<<(j-1))>dfn) f[j][i]=f[j-1][i];else
            f[j][i]=mi(f[j-1][i],f[j-1][i+(1<<(j-1))]);
        }
}
int lca(int x,int y)
{
    if (x==y) return x;
    x=le[x];
    y=le[y];
    if (x>y) swap(x,y);
    //if (ri[x]>ri[y]) return x;
    int z=Log[y-x+1];
    return mi(f[z][x],f[z][y-(1<<z)+1]);
}
int main()
{
    freopen("a.in","r",stdin);
    freopen("a.out","w",stdout);
    scanf("%d %d %d",&n,&m,&q);
    fo(i,1,n) scanf("%d",a+i);
    lsh();//reverse
    fo(i,1,n-1) scanf("%d %d",&x,&y),cr(x,y),cr(y,x);
    dfs(1,0);
    fo(i,1,n*2) Log[i]=trunc(log(i)/log(2));
    make_ST();
    fo(i,1,q)
    {
        scanf("%d %d %d",&x,&y,&z);
        x^=lastans;
        y^=lastans;
        z^=lastans;
        zz=disperse(z);
        lc=lca(x,y);
        c1=get(st[x],1,t1,1,zz-1)+get(st[y],1,t1,1,zz-1)-2*get(st[lc],1,t1,1,zz-1);
        k1=get(st[x],1,t1,1,zz-1);
        k2=get(st[y],1,t1,1,zz-1);
        k3=get(st[lc],1,t1,1,zz-1);
        if (rev[a[lc]]<z) c1++;
        c2=0;
        if (rev[zz]==z)
        {
            c2=get(st[x],1,t1,zz,zz)+get(st[y],1,t1,zz,zz)-2*get(st[lc],1,t1,zz,zz);
            if (rev[a[lc]]==z) c2++;
        }
        c3=dis[x]+dis[y]-2*dis[lc]+1-c1-c2;
        printf("%d %d %d\n",c1,c2,c3);
        lastans=c1^c2^c3;
    }
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值