[arc068f]Solitaire

题目大意

有一个双端队列,你从小到大加入1~N,可以放在队头或者队尾。加入完后,你再删除n次,每次可以删队头和队尾,按删除顺序把删除的数记为一个序列。而且要保证,序列第K位是1,问有多少种不同的序列。模1e9+7
N<=2000

解题思路

先考虑一个合法的加入序列。肯定是从大的数到1,然后从1到大的数的一个类似“山谷”的东西。
然后再考虑删除序列是怎样的。由于第K位是1,那么我们分前后两段考虑。发现满足:
1,序列前K位,可以划分为两个单调递减的子序列。
2,序列后n-k位,可以划分为单调递减和递增各一个子序列。
3,前面K位的两个子序列的最小值的较大值,必须比后面n-k个元素都大。(对计算没什么用)
我们可以考虑计算前K位的方案数,然后剩下的数我们模拟删除的过程,要么删队头要么队尾,那么后面的方案就是2^(n-k-1)。
那我们得找一种划分方法,使得每一种删除序列前K位的方案,都能被这样划分,这样就不会计重复。考虑直接贪心,就是能塞第一个就塞第一个,否则放第二个子序列。考虑从大到小放数到两个子序列里,注意我们会多放n-k个数。
设f[i][j][0,1]表示考虑了n~i这些数,第二个子序列有j个数没有放进删除序列,当前第i个数放到了哪个子序列的末尾,目前删除序列的方案数。考虑i如果放到第二个序列里,不能马上加入删除序列,否则违背贪心原则。如果放进第一个,我们马上删除他,那么第二个子序列可以把原本没有删除的删除,那么转移就比较显然。
最后前K位方案数就是f[1][n-k][0]。
好难说清楚…讲得比较乱
时间复杂度O(n^2)

代码

#include<cstdio> 
#include<algorithm>
#include<cstring>
#include<cmath>
#include<set>
#include<map>
using namespace std;
#define fo(i,j,k) for(i=j;i<=k;i++)
#define fd(i,j,k) for(i=j;i>=k;i--)
#define cmax(a,b) (a=(a>b)?a:b)
#define cmin(a,b) (a=(a<b)?a:b)
typedef long long ll;
const int N=1e6+5,M=2e6+5,mo=1e9+7;
int n,K,i,j,k,ans,f[2005][2005][2];
int main()
{
    freopen("t15.in","r",stdin);
    //freopen("t15.out","w",stdout);
    scanf("%d %d",&n,&K);
    f[n+1][0][0]=1;
    fd(i,n+1,2)
    {
        fd(j,n,0) (f[i][j][0]+=f[i][j+1][0])%=mo;
        fo(j,0,n)
            fo(k,0,1)
            {
                (f[i-1][j+1][1]+=f[i][j][k])%=mo;
                (f[i-1][j][0]+=f[i][j][k])%=mo;
            }
    }
    ans=f[1][n-K][0];
    fo(i,1,n-K-1) 
        ans=ans*2%mo;
    printf("%d",ans);
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值