[JZOJ5594][min25筛]最大真因数

题目描述

一个合数的真因数是指这个数不包括其本身的所有因数,例如6 的正因数有
1; 2; 3; 6,其中真因数有1; 2; 3。一个合数的最大真因数则是这个数的所有真因数中最大
的一个,例如6 的最大真因数为3。
给定正整数l 和r,请你求出l 和r 之间(包括l 和r)所有合数的最大真因数之和。
这里写图片描述

分析

就是叫你算 i=l..r,i  iminfactor(i) ∑ i = l . . r , i 为 合 数     i m i n f a c t o r ( i )
前80分很好拿,基本的筛法即可。
提一提7,8两档,由于我们筛的是合数,那么必定存在根号以内的质因子,我们用根号以内的质因子筛[l,r]的部分即可。
线筛是不可能优化的了,考虑枚举质数去筛的筛法,我们必须要枚举一个质数p的倍数px,是因为不知道px有没有更小的质因子,即被之前的质数筛过了。如果能够优化就好了。
先拆成[1..l-1]和[1..r]。
容斥是不可能容斥的了。分析一下,假如我们算[1..n]一个质数p能筛的倍数px,x必然是小于p的质数都没有筛掉的trunc(n/p)以内的数。那么所有x的和就是trunc(n/p)以内的没有被p筛过的数的和。
考虑一个类似洲阁筛的叫做min25筛的东西。
设f(i,j)表示[2..i]中,除去前j个质数的非自身的倍数,剩下的数的和。也就是说,质数也算在里面。设第j个质数为prime[j].
那么(f(n,j-1)-f(n,j))/prime[j],就是第j个质数筛的那些x的和。
考虑这个东西的性质,尝试快速算。
对于一个f(i,j)
如果 prime[j]2>i p r i m e [ j ] 2 > i ,很明显j可以-1,因为根本不会筛掉任何数。那么j不比 i i 大。
否则,考虑第j个质数筛掉的x*prime[j],我们先把prime[j]除掉,那么x满足 2xi/prime[j] 2 ≤ x ≤ i / p r i m e [ j ] ,且x的质因子不含前j-1个质数。那么x的和就是 f(iprime[j],j1)sum[j1] f ( ⌊ i p r i m e [ j ] ⌋ , j − 1 ) − s u m [ j − 1 ] ,其中sum[j-1]表示前j个质数的和。
那么有递推式 f(i,j)=f(i,j1)prime[j](f(iprime[j],j1)sum[j1]) f ( i , j ) = f ( i , j − 1 ) − p r i m e [ j ] ∗ ( f ( ⌊ i p r i m e [ j ] ⌋ , j − 1 ) − s u m [ j − 1 ] )
记忆化搜索求f(n,m),其中prime[m]为平方后比n小的最大质数,分析时间复杂度,发现i的取值都能够表示成 nx ⌊ n x ⌋ 的形式,因为 nab=nab ⌊ n a b ⌋ = ⌊ ⌊ n a ⌋ b ⌋ 。那么状态数就是每个i的j的个数和。也就是 i=1..nnilnni ∑ i = 1.. n n i l n ⌊ n i ⌋ O(n34logn) O ( n 3 4 l o g n ) 左右。时间复杂度跟这个一样。而实际上,如果记忆化搜索,有的n/i是用不到的。但递推就要用到了。

由于状态数比较多,我们记忆化搜索会很慢,哈希存不下,map带log很慢,所以最好按j分层一层一层递推,具体的,把每个n/i分类,对于i<=sqrt(n)的i,我们按i为下标存编号,其余的按n/i为下标存编号,即像map一样记录映射,然后推即可。

代码

#include<cstdio>
#include<cstring>
#include<cmath>
#include<algorithm>
#include<map>
#include<set>
using namespace std;
typedef long long ll;
typedef double db;
#define fo(i,j,k) for(i=j;i<=k;i++)
#define fd(i,j,k) for(i=j;i>=k;i--)
#define cmax(a,b) (a=(a>b)?a:b)
#define cmin(a,b) (a=(a<b)?a:b)
const int N=2e5+5,M=205,mo=1e9+7;
ll pri[N],i,j,t,sn,sum[N],tmp,ret,n,df[N],val[N],tt,le,ri,v,siz,f[2][N],s,p;
bool pd[N];
ll ans,cnt,l,r,v1,v2,x,mnf[N];
void predo(ll n)
{
    fo(i,2,n)
    {
        if (!pd[i])
        {
            pri[++pri[0]]=i;
            sum[pri[0]]=pri[pri[0]]+sum[pri[0]-1];
        }
        fo(j,1,pri[0])
        {
            if (pri[j]*i>n) break;
            t=pri[j]*i;
            pd[t]=1;
            if (i%pri[j]==0)
                break;
        }
    }
}
ll calc(ll x,ll y)
{
    tt=0;
    le=1;
    while (le<=x)
    {
        v=x/le;
        ri=x/v;
        df[++tt]=1ll*v*(v+1)/2-1;
        if (v<sn) f[0][v]=tt;
        else f[1][le]=tt;
        val[tt]=v;
        le=ri+1;
    }
    siz=tt;
    fo(j,1,y)
    {
        ri=1;
        while (!(val[tt]/pri[j]/pri[j])) tt--;
        fo(i,1,tt)
        {
            v=val[i]/pri[j];
            if (v<sn) p=f[0][v];else p=f[1][n/v];
            tmp=df[p]-sum[j-1];
            if (val[i]==n) 
                ret+=tmp;
            df[i]=df[i]-1ll*tmp*pri[j];
        }
    }
    return df[1];
}
ll calc(ll n)
{
    int j;
    ret=0;
    sn=trunc(sqrt(n));
    fo(j,1,pri[0]) if (pri[j]>sn) break;
    j--;
    calc(n,j);
    return ret;
}
int main()
{
    freopen("t1.in","r",stdin);
    //freopen("factor.out","w",stdout);
    predo(2e5);
    scanf("%lld %lld\n",&l,&r);
    printf("%lld\n",calc(n=r)-calc(n=(l-1)));
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值