斯特林数公式
第一类
nm↓=∑k=0..m(−1)n−k[mk]nk
n
m
↓
=
∑
k
=
0..
m
(
−
1
)
n
−
k
[
k
m
]
n
k
也就是说,
[mk]
[
k
m
]
是
(x)∗(x−1)∗...(x−m+1)
(
x
)
∗
(
x
−
1
)
∗
.
.
.
(
x
−
m
+
1
)
的k次项系数。
由于递推式
[ij]=[i−1j]∗(i−1)+[i−1j−1]
[
j
i
]
=
[
j
i
−
1
]
∗
(
i
−
1
)
+
[
j
−
1
i
−
1
]
和上面系数递推式长一样,所以有这式子。
第二类
nm=∑k=0..n{mk}nk↓
n
m
=
∑
k
=
0..
n
{
k
m
}
n
k
↓
可以理解为m个球放进n个可区分盒子里,不要求每个盒子一定有球。然后我们枚举哪些盒子有球,就可以第二类斯特林数了。
n阶差分公式
对于数组
f(i)
f
(
i
)
,定义
Δnf(i)=Δn−1f(i+1)−Δn−1f(i)
∆
n
f
(
i
)
=
∆
n
−
1
f
(
i
+
1
)
−
∆
n
−
1
f
(
i
)
,其中
Δ0f(i)=f(i)
∆
0
f
(
i
)
=
f
(
i
)
,那么有
Δnf(x)=∑i=0..n(−1)n−iCinf(x+i)
∆
n
f
(
x
)
=
∑
i
=
0..
n
(
−
1
)
n
−
i
C
n
i
f
(
x
+
i
)
伯努利数
设为B[],B[0]=1
生成函数的定义:
xex−1=∑i≥0Bixii!
x
e
x
−
1
=
∑
i
≥
0
B
i
x
i
i
!
基于的组合数定义:
∑i=0..nCin+1Bi=0
∑
i
=
0..
n
C
n
+
1
i
B
i
=
0
由于
xex−1=1∑i≥0xi(i+1)!
x
e
x
−
1
=
1
∑
i
≥
0
x
i
(
i
+
1
)
!
那么右边多项式求逆可以得出B。
用于求自然数幂和
∑i=1..niK=∑i=1..K+1CiK+1BK+1−i(n+1)i
∑
i
=
1..
n
i
K
=
∑
i
=
1..
K
+
1
C
K
+
1
i
B
K
+
1
−
i
(
n
+
1
)
i
可见右边是个卷积的形式,可以FFT优化的。