[一些性质]

斯特林数公式

第一类

nm=k=0..m(1)nk[mk]nk n m ↓ = ∑ k = 0.. m ( − 1 ) n − k [ k m ] n k
也就是说, [mk] [ k m ] (x)(x1)...(xm+1) ( x ) ∗ ( x − 1 ) ∗ . . . ( x − m + 1 ) 的k次项系数。
由于递推式 [ij]=[i1j](i1)+[i1j1] [ j i ] = [ j i − 1 ] ∗ ( i − 1 ) + [ j − 1 i − 1 ] 和上面系数递推式长一样,所以有这式子。

第二类

nm=k=0..n{mk}nk n m = ∑ k = 0.. n { k m } n k ↓
可以理解为m个球放进n个可区分盒子里,不要求每个盒子一定有球。然后我们枚举哪些盒子有球,就可以第二类斯特林数了。

n阶差分公式

对于数组 f(i) f ( i ) ,定义 Δnf(i)=Δn1f(i+1)Δn1f(i) ∆ n f ( i ) = ∆ n − 1 f ( i + 1 ) − ∆ n − 1 f ( i ) ,其中 Δ0f(i)=f(i) ∆ 0 f ( i ) = f ( i ) ,那么有
Δnf(x)=i=0..n(1)niCinf(x+i) ∆ n f ( x ) = ∑ i = 0.. n ( − 1 ) n − i C n i f ( x + i )

伯努利数

设为B[],B[0]=1
生成函数的定义: xex1=i0Bixii! x e x − 1 = ∑ i ≥ 0 B i x i i !
基于的组合数定义: i=0..nCin+1Bi=0 ∑ i = 0.. n C n + 1 i B i = 0
由于 xex1=1i0xi(i+1)! x e x − 1 = 1 ∑ i ≥ 0 x i ( i + 1 ) !
那么右边多项式求逆可以得出B。

用于求自然数幂和

i=1..niK=i=1..K+1CiK+1BK+1i(n+1)i ∑ i = 1.. n i K = ∑ i = 1.. K + 1 C K + 1 i B K + 1 − i ( n + 1 ) i
可见右边是个卷积的形式,可以FFT优化的。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值