【bzoj3000】Big Number【数论】【Stirling公式】

7 篇文章 0 订阅

题意:问你 logkn!+1 是多少 (2n231,k200) 。我一开始想:哦?我们可以用根号n的时间把n的素因子都找出来,然后根据阶乘的素因子分解式分别计算对数然后加起来……
呵呵,WA了。
问题是,n的素因子确实可以在 O(n) 的时间内分解出来,但是 n!
比如 231!=2147483648! ,有2147483647这个素因子,甚至小于 231 的素数都是它的素因子。
所以说这个算法蔫了。
这个算法是这样的:

#include<cstring>
#include<iostream>
#include<cstdio>
#include<cmath>
using namespace std;
bool isprime[500001];
int nprime,prime[5000001];
void Prime(int n){
    memset(isprime,true,sizeof isprime);
    for(int i=2;i<=n;++i){
        if(isprime[i]) prime[nprime++]=i;
        for(int j=0;j<nprime&&i*prime[j]<=n;++j){
            isprime[i*prime[j]]=false;
            if(i%prime[j]==0) break;
        }
    }
}
typedef long long int64;
int64 solve(int64 n,int64 k){
    int64 factor[50000]={0};
    int64 times[50000]={0};
    int tot=0;
    for(int i=0;i<nprime;++i){
        int64 tmp=n/prime[i];
        if(tmp) factor[++tot]=prime[i],times[tot]=tmp;
        while(tmp){
            tmp/=prime[i];
            times[tot]+=tmp;
        }
    }
    long double ans=0;
    for(int i=1;i<=tot;++i)
        ans+=(long double)times[i]*log((long double)factor[i]);
    ans/=log((long double)k);
    return trunc(ans)+1;
}
int main(){
    Prime(50000);
    int64 n,k;
    while(scanf("%lld%lld",&n,&k)==2)
        printf("%lld\n",solve(n,k));
}

而正解是这样的:
当n很大时,有斯特林近似公式:

n!2πn(ne)n

因此可以 O(1) 算出来。
友情提示:小心爆int。

#include<cstdio>
#include<cmath>
const long double pi=3.14159265358;
typedef long long int64;
inline int64 f(int64 n,int64 k){
    return trunc((0.5*log(2*pi*n)+n*(log(n)-1.0))/log(k))+1;
}
inline int64 bf(int64 n,int64 k){
    long double s=0;
    for(int64 i=1;i<=n;++i)
        s+=log(i);
    return trunc(s/log(k))+1;
}
int main(){
    int64 n,k;
    while(scanf("%lld%lld",&n,&k)==2)
        printf("%lld\n",n>80?f(n,k):bf(n,k));
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值