题意:问你
⌊logkn!⌋+1
是多少
(2≤n≤231,k≤200)
。我一开始想:哦?我们可以用根号n的时间把n的素因子都找出来,然后根据阶乘的素因子分解式分别计算对数然后加起来……
呵呵,WA了。
问题是,n的素因子确实可以在
O(n−−√)
的时间内分解出来,但是
n!
?
比如
231!=2147483648!
,有2147483647这个素因子,甚至小于
231
的素数都是它的素因子。
所以说这个算法蔫了。
这个算法是这样的:
#include<cstring>
#include<iostream>
#include<cstdio>
#include<cmath>
using namespace std;
bool isprime[500001];
int nprime,prime[5000001];
void Prime(int n){
memset(isprime,true,sizeof isprime);
for(int i=2;i<=n;++i){
if(isprime[i]) prime[nprime++]=i;
for(int j=0;j<nprime&&i*prime[j]<=n;++j){
isprime[i*prime[j]]=false;
if(i%prime[j]==0) break;
}
}
}
typedef long long int64;
int64 solve(int64 n,int64 k){
int64 factor[50000]={0};
int64 times[50000]={0};
int tot=0;
for(int i=0;i<nprime;++i){
int64 tmp=n/prime[i];
if(tmp) factor[++tot]=prime[i],times[tot]=tmp;
while(tmp){
tmp/=prime[i];
times[tot]+=tmp;
}
}
long double ans=0;
for(int i=1;i<=tot;++i)
ans+=(long double)times[i]*log((long double)factor[i]);
ans/=log((long double)k);
return trunc(ans)+1;
}
int main(){
Prime(50000);
int64 n,k;
while(scanf("%lld%lld",&n,&k)==2)
printf("%lld\n",solve(n,k));
}
而正解是这样的:
当n很大时,有斯特林近似公式:
n!∼2πn−−−√(ne)n
因此可以 O(1) 算出来。
友情提示:小心爆int。
#include<cstdio>
#include<cmath>
const long double pi=3.14159265358;
typedef long long int64;
inline int64 f(int64 n,int64 k){
return trunc((0.5*log(2*pi*n)+n*(log(n)-1.0))/log(k))+1;
}
inline int64 bf(int64 n,int64 k){
long double s=0;
for(int64 i=1;i<=n;++i)
s+=log(i);
return trunc(s/log(k))+1;
}
int main(){
int64 n,k;
while(scanf("%lld%lld",&n,&k)==2)
printf("%lld\n",n>80?f(n,k):bf(n,k));
}