介绍
这段代码是一个基于 TensorFlow 和 Keras 的深度学习模型,用于进行数据的回归任务。让我逐步解释一下:
-
导入必要的库:这里导入了 NumPy 用于数值计算,Pandas 用于数据处理,Matplotlib 用于绘图,TensorFlow 用于构建和训练深度学习模型,以及一些相关的模块和函数。
-
读取 CSV 文件:使用 Pandas 读取名为 "data_csv.csv" 的 CSV 文件,将数据存储在 DataFrame 中。
-
提取 X 和 y:从 DataFrame 中提取特征变量和目标变量,并将它们转换为 NumPy 数组的形式。
-
调整 X 的形状:将特征变量 X 的形状重新调整为 (1000, 100, 1),这是因为该模型使用了 Conv1D 层,需要三维输入,其中 100 是时间步长,1 是特征数量。
-
划分数据集:将数据集划分为训练集和测试集,其中测试集占比为 20%。
-
构建 CNN 模型:使用 Sequential 模型构建一个卷积神经网络模型,包括两个 Conv1D 层用于特征提取和一个全连接层用于输出。这个模型的结构是:两个卷积层(每个卷积层包括 64 个滤波器和 3 的卷积核大小),然后是一个展平层,接着是一个具有 50 个神经元的隐藏层,最后是一个输出层。
-
编译模型:使用 Adam 优化器和均方误差损失函数编译模型。
-
训练模型:使用训练集进行模型训练,共训练 50 个 epochs,批量大小为 32,并在训练过程中使用了验证集来监测模型的性能。
-
进行预测并评估模型:使用测试集进行模型预测,并计算预测结果与真实结果之间的均方误差。
-
绘制实际值和预测值的比较图:使用 Matplotlib 绘制了实际值和预测值的比较图,以直观地查看模型的预测效果。
-
绘制预测误差图:使用 Matplotlib 绘制