机器学习预测-CNN数据预测示例

介绍

这段代码是一个基于 TensorFlow 和 Keras 的深度学习模型,用于进行数据的回归任务。让我逐步解释一下:

  1. 导入必要的库:这里导入了 NumPy 用于数值计算,Pandas 用于数据处理,Matplotlib 用于绘图,TensorFlow 用于构建和训练深度学习模型,以及一些相关的模块和函数。

  2. 读取 CSV 文件:使用 Pandas 读取名为 "data_csv.csv" 的 CSV 文件,将数据存储在 DataFrame 中。

  3. 提取 X 和 y:从 DataFrame 中提取特征变量和目标变量,并将它们转换为 NumPy 数组的形式。

  4. 调整 X 的形状:将特征变量 X 的形状重新调整为 (1000, 100, 1),这是因为该模型使用了 Conv1D 层,需要三维输入,其中 100 是时间步长,1 是特征数量。

  5. 划分数据集:将数据集划分为训练集和测试集,其中测试集占比为 20%。

  6. 构建 CNN 模型:使用 Sequential 模型构建一个卷积神经网络模型,包括两个 Conv1D 层用于特征提取和一个全连接层用于输出。这个模型的结构是:两个卷积层(每个卷积层包括 64 个滤波器和 3 的卷积核大小),然后是一个展平层,接着是一个具有 50 个神经元的隐藏层,最后是一个输出层。

  7. 编译模型:使用 Adam 优化器和均方误差损失函数编译模型。

  8. 训练模型:使用训练集进行模型训练,共训练 50 个 epochs,批量大小为 32,并在训练过程中使用了验证集来监测模型的性能。

  9. 进行预测并评估模型:使用测试集进行模型预测,并计算预测结果与真实结果之间的均方误差。

  10. 绘制实际值和预测值的比较图:使用 Matplotlib 绘制了实际值和预测值的比较图,以直观地查看模型的预测效果。

  11. 绘制预测误差图:使用 Matplotlib 绘制

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

唐学成

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值