自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(34)
  • 收藏
  • 关注

原创 三种石墨烯(Graphene)拉伸模拟方法对比

个人理解,仅供参考,若有问题欢迎讨论!📌 模拟逻辑:使用fix deform指令,对模拟盒子整体在;同时施加npt控制,使 y 和 z 方向维持零压状态(自由弛豫);整个石墨烯结构在形变过程中“同步响应”,模拟了理想的等速应变加载。🧠 理解方式:这是一种宏观力学视角下的材料拉伸方法,整个模拟盒子就像一张“橡皮布”被均匀拉长。适合研究:大尺度结构的平均响应;泊松比效应。✅ 优点:结构整体连续变形;可配合应变速率精确调控;能清晰观察到对称性和波纹展开过程。

2025-05-05 15:19:21 846 1

原创 365天读文献,Day6,波纹网络设计的拉胀穿孔超材料

具有花生状孔洞的负泊松比超材料由于其极低的应力集中水平和可控的负泊松比特性,在耐用的形变控制应用中表现出优越的性能。然而,这类具有复杂胞元特征的超材料仍存在一些需要关注的问题,包括:(1) 改进结构拓扑以提高材料效率;(2) 实现从正泊松比到负泊松比的可调节性;(3) 全弹性性能的表征。为此,数值模型通过三种不同几何拓扑的试样实验测试进行了验证。随后,研究突出了结构弹性响应对微结构配置的依赖性,以深化对胞元-结构-性能关系的理解。

2025-01-13 10:51:44 1076

原创 365天阅读文献,Day5,剪纸石墨烯

本文提出了一种利用剪纸术加工石墨烯的方法,将其成功应用于构建具有可调机械性能的微尺度器件。研究发现,石墨烯的波纹结构显著增强了其弯曲刚度,使其具备类似纸张的力学特性。

2025-01-10 09:55:05 590

原创 365天读文献,Day4,含空位缺陷石墨烯的铜基纳米复合材料

本文基于分子动力学(MD)数据库和遗传编程(GP)算法,提出了一种数据驱动的建模方法,解决了这一关键问题,并利用该方法修改现有的Halpin-Tsai模型和混合规则,考虑空位缺陷的影响。数据驱动的微观力学模型能够在不同温度下,提供石墨烯增强铜(Cu)纳米复合材料的热弹性性能的准确高效预测,且其决定系数(R²)均大于0.9。此外,经过充分训练的数据驱动微观力学模型还被应用于功能梯度缺陷石墨烯增强复合材料梁的热屈曲、弹性屈曲、自由振动和静态弯曲分析。

2025-01-09 09:41:07 1007

原创 365天读文献,Day3,二维超材料的力学各向异性

超材料的力学性能不仅取决于结构的组成,其材料也起着重要的作用。结果表明:在轴向拉伸载荷作用下,材料的变形过程可分为弯曲和拉伸两个阶段,其中弯曲阶段接头的旋转导致了材料的拉胀行为。此外,拉伸行为在很大程度上取决于正弦韧带的振幅/波长比和轴向与横向之间的刚度比。更有趣的是,随着刚度比增加,负泊松比也在增加。研究结果揭示了拉胀超材料的变形机制,为设计具有可调负泊松比的二维拉胀晶格结构提供了有益的指导。

2025-01-08 10:18:56 817

原创 365天读文献,Day2,穿孔石墨烯的结构与力学性能关系

为了揭示纳米多孔石墨烯(NPG)膜的结构与性能之间的关系,采用方法研究了材料在对于所有拉伸情况,裂纹在具有高应力的孔边缘上起始,并且优选地沿石墨烯的Z字形方向沿着传播。双向拉伸时NPG的弹性模量高于单向拉伸时的弹性模量。相对密度往往是决定力学性能的主要特征参数。在约束几何形状下,在颈部宽度的尺寸效应中观察到“越小越强”和“越小越坚韧”。孔隙形状影响应力分布和集中,导致不同的力学响应。特别地,在拉伸方向上的应力集中显著地降低了机械性能。

2025-01-07 11:02:34 996

原创 365天读文献,Day1,可调负泊松比的晶格结构

本研究提出了一类具有机械可调负泊松比和振动缓解能力的晶格结构超材料。

2025-01-07 10:00:08 847

原创 机器学习预测-CNN手写字识别

通过子类化。

2024-05-25 20:52:02 825

原创 机器学习预测-CNN数据预测示例

这段代码是一个基于 TensorFlow 和 Keras 的深度学习模型,用于进行数据的回归任务。让我逐步解释一下:导入必要的库:这里导入了 NumPy 用于数值计算,Pandas 用于数据处理,Matplotlib 用于绘图,TensorFlow 用于构建和训练深度学习模型,以及一些相关的模块和函数。读取 CSV 文件:使用 Pandas 读取名为 "data_csv.csv" 的 CSV 文件,将数据存储在 DataFrame 中。

2024-05-25 20:49:11 644

原创 机器学习-RF预测

本文使用机器学习RF对数据进行预测。仅供参考

2024-05-16 10:17:26 370

原创 机器学习-SVM预测

本文使用机器学习SVM对数据进行预测。

2024-05-16 10:13:19 1005

原创 机器学习-MLP预测

本文使用机器学习MLP对数据进行预测。

2024-05-14 10:27:55 685

原创 20240514基于深度学习的弹性超材料色散关系预测与结构逆设计

论文:Dispersion relation prediction and structure inverse design of elastic metamaterials via deep learningDOI:https://doi.org/10.1016/j.mtphys.2022.1006161、摘要精心设计的超材料结构给予前所未有的性能,保证了各种各样的具体应用。传统的方法通常依赖于在研究人员的经验和优化算法的帮助下,在广阔的设计空间中进行迭代搜索,以获得具有所需性能的结构。在

2024-05-14 10:10:47 1469

原创 LAMMPS学习-in文件模板

使用命令行建模比较抽象,建模过程不是“所见即所得”,为了验证所建模型是否符合要求,可以在建模代码的后面使用write_data命令把模型保持为data文件,在lammps中运行in文件,用ovito观察一下模型是否正确。这一部分主要设置一些模拟参数,比如模拟体系的单位(units)、边界条件(boundary)、原子类型(atom_style)、邻居列表的定义(neighbor)、时间步长(timestep)等。在npt、nvt等系综下,对体系进行充分的弛豫,使体系的能量达到最低,获得平衡态的结构。

2024-05-12 16:48:19 1260

原创 LAMMPS单层石墨烯剪切(velocity)

每个部分都有对应的命令和参数设置,通过这些设置和命令,可以在LAMMPS中进行分子动力学模拟。

2024-04-30 11:59:50 2239 12

原创 20240430使用浅层和深层神经网络表征缺陷石墨烯的断裂应力

基于Bailey耐久性准则和Arrhenius方程开发解析解。预测的断裂应力是温度、应变率、空位浓度和加载方向的函数。数据来源于断裂强度数值方法和MD模拟。

2024-04-30 11:13:25 835 1

原创 LAMMPS命令学习

lammps常见命令学习

2024-04-29 20:18:48 675

原创 20240427纳米多孔石墨烯力学性能的调控

在这项工作中,使用经典MD模拟分析了扶手椅和锯齿形的NPG(纳米多孔石墨烯)纳米片的力学性能和变形机制。确定了三个可以控制和调节NPG力学性能的几何参数,阐明并分析了纳米孔的尺寸和间距对NPG基本力学性能的影响。结果表明,纳米孔的存在显著降低了石墨烯的弹性模量和极限强度,这是由于纳米孔附近垂直于加载方向的应力集中所致.此外,还发现纳米孔的尺寸和间距对NPG的力学性能有显著影响。杨氏模量随着纳米孔间距的增大而增大。NPG的弹性模量和极限强度均随纳米孔尺寸的增大而减小。

2024-04-27 20:06:54 426

原创 LAMMPS单层石墨烯拉伸(velocity)

variable temperature equal 300 #初始温度variable relaxtemperature equal 300 #弛豫温度variable tensiontemperature equal 300 #拉伸温度variable tstep equal 0.001 #步长variable thermalstep equal 100 #输出模拟结果信息variable dumpstep equal 100 #参数输出步长。

2024-04-27 19:20:59 3329

原创 LAMMPS单层石墨烯拉伸(deform)

定义全局参数,方便后期修改。variable temperature equal 300 #初始温度variable relaxthermalstep equal 100 #弛豫温度variable tensionthermalstep equal 100 #拉伸温度variable tstep equal 0.001 #步长variable thermalstep equal 100 #输出模拟结果信息variable dumpstep equal 100 #参数输出步长。

2024-04-24 20:17:20 2468

原创 LAMMPS石墨烯建模

LAMMPS石墨烯建模

2024-04-24 14:07:27 4095 5

原创 20240422剪纸石墨烯压痕研究

纳米压痕下,研究石墨烯剪纸的几何参数和压头的尺寸与速度对压痕的影响,最后使用两层石墨烯(石墨烯剪纸和完美石墨烯)权衡柔性和强度。题目:Failure mechanism of graphene kirigami under nanoindentation。

2024-04-22 14:44:25 266

原创 20240326使用机器学习和高通量计算加速发现石墨烯的力学性能

𝟓×𝟏𝟎−𝟓。

2024-03-26 19:27:15 1180

原创 20240325数据驱动的机器学习预测单层二维材料力学性能

(a)断裂应力,(b)断裂应变,(c)杨氏模量。LSTM模型训练过程中的损失。FFNN模型训练过程中的损失。

2024-03-25 20:59:47 547 2

原创 20240314一种各向同性负泊松比多孔材料的设计

Design of a porous material with isotropic negative Poisson’s ratioDOI:http://dx.doi.org/10.1016/j.mechmat.2016.02.012摘要:本文提出了一种具有全方位负泊松比的二维多孔体的设计方法。孔隙的六边形周期性分布使力学性能(泊松比、杨氏模量和剪切模量)各向同性。同时进行实验测试和数值模拟,以确定多孔模型的力学性能,并且研究了几何微结构参数对力学性能影响。(1)模型在拉伸和压缩条件下都表现出负泊松比效应

2024-03-14 19:58:45 317

原创 20240305石墨烯剪纸拉胀行为

Name: Effects of size and surface on the auxetic behaviour of monolayer graphene kirigami DOI: 10.1038/srep35157总结:从剪纸尺寸、氢化和表面效应进行研究。问题:当剪纸尺寸发生变化时,模型大小也发生变化,可对比性较弱。发生拉胀机理值得参考;泊松比以及模量比随着结构的尺寸,如支杆之间的角度和支杆的尺寸的变化而变化。Name: Negative Poisson’s ratio in periodic p

2024-03-05 19:55:51 550

原创 Xftp/Xshell的使用

官网上下载免费最新安装包,注册账号账号:SCZhang邮箱:学校邮箱。

2024-03-03 16:43:35 695

原创 20210303自主强化学习设计可拉伸剪纸二维材料

若有问题,欢迎交流,虚心学习!

2024-03-03 14:29:13 520

原创 20240301基于机器学习的低热导率多孔石墨烯设计

Name: Machine learning-based design of porous graphene with low thermal conductivityDOI: https://doi.org/10.1016/j.carbon.2019.10.037总结:所有库训练CNN,证明可行,然后对同孔隙率结构,进行迭代训练CNN,发现导热率最低结构,优点只需进行有限MD模拟就行。最后用更大结构进行验证,得出结论。论文代码:http://jiangjinwu.orgInverse design

2024-03-01 20:52:14 504

原创 20240228石墨烯负泊松比部分文献总结

若有问题,欢迎交流,虚心学习!

2024-02-28 19:52:39 449

原创 20240227单轴/双轴拉伸下旋转三角形石墨烯剪纸模型

Name: Deformation response of highly stretchable and ductile graphene kirigami under uniaxial and biaxial tensionDOI: 10.1103/PhysRevB.108.134105总结:提出旋转三角形剪纸,单轴/双轴拉伸,并且研究剪纸尺寸对拉伸响应的影响。模型有着良好的拉伸和延展性能,并且有着较好的刚度。若有问题,欢迎交流,虚心学习!

2024-02-27 15:11:38 454

原创 20240226基于机器学习的可调泊松比二维超材料结构的预测与逆设计

Name: Machine learning-based prediction and inverse design of 2D metamaterial structures with tunable deformation-dependent Poisson’s ratioDOI: https://doi.org/10.1039/d2nr02509d创新点:可预测应变-泊松比曲线;逆设计;机器学习0102

2024-02-26 15:24:30 588 1

原创 20240131机器学习预测缺陷石墨烯力学参数

文献阅读笔记

2024-01-31 21:26:50 267 1

原创 机器学习-神经网络:预测疲劳寿命(训练+预测)

Python神经网络回归预测模型(训练+预测)

2023-05-15 13:30:26 8916 20

空空如也

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除