基于YOLOv8深度学习的不良坐姿监测与语音提醒系统(PyQt5界面+数据集+训练代码)

本文设计并实现了一种基于YOLOv8深度学习模型的智能坐姿检测系统,旨在实现对用户坐姿的实时监测和识别,帮助用户及时调整不良坐姿,从而减少因长期坐姿不良带来的健康风险。随着现代社会中久坐行为的增加,越来越多的人出现了因坐姿不良引发的颈椎、脊柱以及腰椎问题,尤其是在办公室工作和课堂学习等场景下。本系统利用YOLOv8的高效目标检测能力,通过对用户坐姿的实时监测,为用户提供即时反馈,帮助其维持健康的坐姿习惯。

系统设计能够识别五种常见的坐姿状态,包括坐姿正常状态、坐姿呈高低肩、坐姿距离过近、坐姿驼背状态以及坐姿翘二郎腿。每种坐姿类别代表一种特定的坐姿情况,其中,“坐姿呈高低肩”表示用户左右肩膀高度不一致的情况,“坐姿距离过近”表示用户坐姿距离过近而导致视距不合理的情况,“坐姿驼背状态”表示用户背部弯曲,姿势不端的情况,“坐姿翘二郎腿”表示用户双腿交叉坐姿,这些姿势可能导致身体不适或长期健康隐患。通过对大量坐姿数据集的训练和验证,系统在检测精度(mAP@0.5)上达到了95.1%,展示出较高的检测准确性和稳定性,能够可靠地识别不同的坐姿类别。

在性能评估过程中,系统的精确率-召回率曲线进一步表明其在不同坐姿类别上的识别效果,尤其是在“坐姿翘二郎腿”和“坐姿驼背状态”类别上表现尤为出色,达到了较高的精确率和召回率。这表明系统在减少误报和漏报方面表现优异,使得用户能够更加准确地了解自身坐姿情况,并在必要时进行及时的调整和改正。

本系统不仅在准确性方面表现出色,同时在实时性方面也达到了较高的要求。每张图像的检测时间保持在毫秒级,能够实现毫秒级的快速响应,为用户提供流畅的实时坐姿检测体验。这样的响应速度使得系统适用于各种需要长时间保持坐姿的环境,例如办公室、教室、家庭等。用户在这些环境中可以实时接收系统反馈,从而有效预防因长期不良坐姿导致的慢性疾病,如颈椎病、脊柱侧弯和腰肌劳损等。

系统界面采用了PyQt5设计,界面友好且操作简单,用户可以轻松上手。检测结果通过直观的可视化方式显示,便于用户了解其坐姿状态并做出调整。此外,系统还具有良好的扩展性,可以通过进一步的模型训练来适应更多样化的坐姿检测任务。例如,系统可以根据具体场景需求扩展到其他不良坐姿检测任务中,以满足特定应用场景下的多样化需求。

本研究表明,YOLOv8模型在智能健康监测系统中的应用潜力巨大。通过将深度学习技术应用于健康监测领域,本研究为智能坐姿检测系统的研发提供了有效的技术支持和实现方案。未来可以进一步研究如何将该系统集成到智能家具中,如智能办公椅或智能桌子上,实现更全面的健康监控和反馈,从而进一步提升用户的使用体验。

算法流程

项目数据

通过搜集关于数据集为各种各样的坐姿监测相关图像,并使用Labelimg标注工具对每张图片进行标注,分5检测类别,分别是’坐姿正常状态’, ‘坐姿呈高低肩’, ‘坐姿距离过近’, ‘坐姿驼背状态’, ‘坐姿翘二郎腿’。

目标检测标注工具
(1)labelimg:开源的图像标注工具,标签可用于分类和目标检测,它是用python写的,并使用Qt作为其图形界面,简单好用(虽然是英文版的)。其注释以 PASCAL VOC格式保存为XML文件,这是ImageNet使用的格式。此外,它还支持 COCO数据集格式。
(2)安装labelimg 在cmd输入以下命令 pip install labelimg -i https://pypi.tuna.tsinghua.edu.cn/simple

结束后,在cmd中输入labelimg

初识labelimg

打开后,我们自己设置一下

在View中勾选Auto Save mode

接下来我们打开需要标注的图片文件夹

并设置标注文件保存的目录(上图中的Change Save Dir)
接下来就开始标注,画框,标记目标的label,然后d切换到下一张继续标注,不断重复重复。

Labelimg的快捷键

(3)数据准备
这里建议新建一个名为data的文件夹(这个是约定俗成,不这么做也行),里面创建一个名为images的文件夹存放我们需要打标签的图片文件;再创建一个名为labels存放标注的标签文件;最后创建一个名为 classes.txt 的txt文件来存放所要标注的类别名称。

data的目录结构如下:
│─img_data
│─images 存放需要打标签的图片文件
│─labels 存放标注的标签文件
└ classes.txt 定义自己要标注的所有类别(这个文件可有可无,但是在我们定义类别比较多的时候,最好有这个创建一个这样的txt文件来存放类别)

首先在images这个文件夹放置待标注的图片。
生成文件如下:

“classes.txt”定义了你的 YOLO 标签所引用的类名列表。

评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值