本研究提出了一种基于YOLOv8深度学习的智慧课堂学生专注度检测系统,旨在实现对课堂中学生专注度的实时分析与评估。随着智慧教育的快速发展,学生的课堂表现和专注度成为评估学习效果的重要因素之一。然而,传统的专注度评估方法往往依赖于主观观察或通过问卷调查收集信息,存在耗时、效率低下、主观性强等问题。为了解决这些问题,本文设计了一种基于YOLOv8目标检测算法的智能系统,结合深度学习技术,对学生的面部表情、姿态、眼动等多种行为特征进行自动检测和分类,从而对其专注度进行科学量化。
该系统采用PyQt5作为用户界面,界面简洁直观,用户能够通过该平台实时监控课堂中的学生表现。通过自定义的数据集,该系统将学生的专注度划分为七个等级,分别是:中等专注、较高专注、高度专注、没有专注、低专注、中等偏低专注和较低专注。每个专注度等级的划分基于学生的多模态行为特征,尤其是面部表情变化、头部运动和眼神专注方向等,深度学习模型通过大量数据的训练和优化,能够精准识别这些特征并做出判断。
在系统的实现过程中,本文详细描述了数据采集、标注以及模型训练的全过程。使用的YOLOv8深度学习模型因其强大的检测精度和实时性,能够快速响应并处理多名学生的专注度信息。此外,系统还提供了结果的可视化功能,教师可以通过界面查看专注度分类结果,及时了解课堂中每个学生的专注状态。系统还支持对历史数据的统计和分析,帮助教育工作者从更长远的时间尺度上观察学生的专注度变化,为教学改进提供数据支持。
实验部分,本研究在多个真实课堂场景中对系统进行了验证。实验结果表明,系统在准确性、鲁棒性和实时性方面表现优异,能够有效应对不同照明条件、学生面部遮挡等复杂场景。与现有方法相比,该系统不仅提高了检测效率,还减少了教师的负担,进一步增强了课堂管理的智能化水平。该系统的应用前景广泛,不仅可用于课堂教学,还可以在远程教育、个性化学习管理等领域发挥重要作用。
本文所提出的基于YOLOv8的智慧课堂学生专注度检测系统,为教育领域的智能化管理提供了一种全新的解决方案。未来,随着数据集的进一步丰富和模型性能的持续优化,该系统有望在更大范围内推广应用,推动智慧教育的深度发展。
算法流程
项目数据
通过搜集关于数据集为各种各样的学生专注度相关图像,并使用Labelimg标注工具对每张图片进行标注,分7检测类别,分别是’中等专注’,’较高专注’,’高度专注’,’没有专注’,’低专注’,’中等偏低专注’,’较低专注’。
目标检测标注工具
(1)labelimg:开源的图像标注工具,标签可用于分类和目标检测,它是用python写的,并使用Qt作为其图形界面,简单好用(虽然是英文版的)。其注释以 PASCAL VOC格式保存为XML文件,这是ImageNet使用的格式。此外,它还支持 COCO数据集格式。
(2)安装labelimg 在cmd输入以下命令 pip install labelimg -i https://pypi.tuna.tsinghua.edu.cn/simple
结束后,在cmd中输入labelimg
初识labelimg
打开后,我们自己设置一下
在View中勾选Auto Save mode
接下来我们打开需要标注的图片文件夹
并设置标注文件保存的目录(上图中的Change Save Dir)
接下来就开始标注,画框,标记目标的label,然后d切换到下一张继续标注,不断重复重复。
Labelimg的快捷键
(3)数据准备
这里建议新建一个名为data的文件夹(这个是约定俗成,不这么做也行),里面创建一个名为images的文件夹存放我们需要打标签的图片文件;再创建一个名为labels存放标注的标签文件;最后创建一个名为 classes.txt 的txt文件来存放所要标注的类别名称。
data的目录结构如下:
│─img_data
│─images 存放需要打标签的图片文件
│─labels 存放标注的标签文件
└ classes.txt 定义自己要标注的所有类别(这个文件可有可无,但是在我们定义类别比较多的时候,最好有这个创建一个这样的txt文件来存放类别)
首先在images这个文件夹放置待标注的图片。
生成文件如下:
“classes.txt”定义了你的 YOLO 标签所引用的类名列表。