本研究提出了一种创新的基于YOLOV8深度学习模型的医学影像肺结节检测与诊断系统,旨在为肺结节的早期检测与诊断提供智能化支持。肺结节作为肺癌早期病变的常见表现,其准确检测和诊断对提高早期肺癌的治疗效果至关重要。然而,传统的肺结节检测依赖于医生的经验和手工标注,存在较大的主观性和工作量。因此,如何借助人工智能技术实现快速、精准的自动化检测成为亟待解决的问题。
该系统通过结合最新的YOLOV8深度学习模型,利用其高效的目标检测能力,对医学影像中的肺结节进行精准的检测和分类。同时,系统还集成了PyQt5图形用户界面,为用户提供了友好、直观的操作体验。通过该界面,用户可以方便地导入CT影像数据,进行检测操作,并实时查看检测结果及相关诊断建议。系统还提供了对检测结果的可视化功能,使医生能够直观地了解肺结节的位置、大小和类型,从而辅助诊断决策。
数据集方面,系统选用了多种真实的肺结节CT影像,经过严格的预处理步骤后,这些数据用于训练和验证YOLOV8模型。预处理过程包括图像增强、噪声过滤和数据扩充,确保模型在训练过程中能够学习到肺结节的多种特征,提高检测的泛化能力和准确性。系统不仅可以对肺结节进行检测和定位,还能够对不同类型的肺结节进行分类,提供详细的诊断信息。这为医生提供了参考依据,有助于减少误诊和漏诊。
实验结果表明,该系统在肺结节检测任务中具有较高的精度和召回率,能够有效减少假阳性和假阴性的发生。与传统的检测方法相比,系统在检测速度和精度上都具有明显的优势,为医学影像智能分析提供了切实可行的解决方案。该系统不仅能够减轻医生的工作负担,还可以通过其高效性和可靠性为医疗诊断提供有力的技术支持。
本系统为肺结节的智能化检测与诊断提供了一种先进的工具,展示了深度学习技术在医学影像分析领域的广阔应用前景。未来的研究可以进一步扩展系统的功能,如引入多模态数据分析以及跨设备的影像检测,以提高其在不同临床场景下的适用性和鲁棒性
算法流程
项目数据
通过搜集关于数据集为各种各样的肺结节相关图像,并使用Labelimg标注工具对每张图片进行标注,分1个检测类别,分别是Nodule表示”肺结节”。
目标检测标注工具
(1)labelimg:开源的图像标注工具,标签可用于分类和目标检测,它是用python写的,并使用Qt作为其图形界面,简单好用(虽然是英文版的)。其注释以 PASCAL VOC格式保存为XML文件,这是ImageNet使用的格式。此外,它还支持 COCO数据集格式。
(2)安装labelimg 在cmd输入以下命令 pip install labelimg -i https://pypi.tuna.tsinghua.edu.cn/simple
结束后,在cmd中输入labelimg
初识labelimg
打开后,我们自己设置一下
在View中勾选Auto Save mode
接下来我们打开需要标注的图片文件夹
并设置标注文件保存的目录(上图中的Change Save Dir)
接下来就开始标注,画框,标记目标的label,然后d切换到下一张继续标注,不断重复重复。
Labelimg的快捷键
(3)数据准备
这里建议新建一个名为data的文件夹(这个是约定俗成,不这么做也行),里面创建一个名为images的文件夹存放我们需要打标签的图片文件;再创建一个名为labels存放标注的标签文件;最后创建一个名为 classes.txt 的txt文件来存放所要标注的类别名称。
data的目录结构如下:
│─img_data
│─images 存放需要打标签的图片文件
│─labels 存放标注的标签文件
└ classes.txt 定义自己要标注的所有类别(这个文件可有可无,但是在我们定义类别比较多的时候,最好有这个创建一个这样的txt文件来存放类别)
首先在images这个文件夹放置待标注的图片,这里是一类图片,就是using phone。
生成文件如下:
“classes.txt”定义了