1. 引言
随着深度学习技术的发展,医疗影像自动分析成为医学领域的研究热点。病灶检测是辅助诊断的关键环节,可以帮助医生快速定位异常区域,提高诊断效率和准确性。近年来,目标检测模型如YOLO系列在速度和精度上取得显著突破,YOLOv8更是引入了更先进的架构设计和训练技巧,适合实时医疗影像检测。
本博客将结合YOLOv8目标检测模型,完成医疗影像病灶的训练和检测,最终用Python设计一个简易的UI界面实现图像加载和病灶标注展示。整个流程从数据准备、训练、推理到界面集成全面展开,附带完整代码,方便读者复现和二次开发。
2. 医疗影像病灶检测简介
2.1 医疗影像类型
- X光片(X-ray)
- CT(Computed Tomography)
- MRI(Magnetic Resonance Imaging)
- 超声波(Ultrasound)
病灶检测即在上述影像中自动识别肿瘤、结节、出血等异常区域。
2.2 检测难点
- 病灶形态