【手把手带你刷Leetcode力扣】1.算法的时间与空间复杂度

本文详细介绍了算法的时间复杂度和空间复杂度,包括常见时间复杂度案例,如常量时间O(1)、对数时间O(logN)、线性时间O(N)、平方时间O(N^2)等,并对比了它们的关系。同时讲解了空间复杂度的概念,如常量空间O(1)、线性空间O(N)等。在实际应用中,通常需要权衡时间与空间,面试时要求清晰阐述两者,工作中则更注重时间效率。
摘要由CSDN通过智能技术生成

什么是时间复杂度

算法的执行效率
算法的执行时间与算法的输入值之间的关系

def test(num): # N
	total = 0 # a
	for i in range(num):
		total += i # b
	return total # c

a+Nb+c
忽略常量
忽略系数

  • O(N)

常见时间复杂度案例分析

for/while

  • O(1)
def O1(num):
	i = num
	j = num*2
	return i
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值