最易懂的数学推导:傅里叶级数与傅里叶变换

最易懂的数学推导:傅里叶级数与傅里叶变换

1、写在前面

傅里叶变换,我已经忘记是什么时候第一次听到它了,当时给我留下的印象就是这玩意儿很数学,很巧妙,很重要,并且应用广泛。但是由于自己之前的学习和项目中并不是非要用傅里叶变换不可,而且我对自己数学功底不是非常自信,所以一直没有仔细地去研究它。然而最近毕设的项目涉及到WIFI CSI (Channel State Imformation) 信号处理,我们计科的学生又没被教过数字信号处理这门课,这下不得不去自学傅里叶变换了…

这两天我翻阅了网上很多有关傅里叶变换的文章和博客,发现主要有两种文章。一种文章是纯面向大众,文章里几乎不涉及到数学公式,旨在用最简单最直观的方式让读者理解傅里叶变换是什么,有什么用,并且加上一些辞藻让你感觉傅里叶变换多高深多精妙。但是对于我们学生或者科研工作者,只了解个科普那是远远不够的,我们必须要理解原理,理解数学公式,理解怎么去使用它。另一种文章就是原理性的文章,里面能看见很多复杂的数学式子,加上一些专业名词,我承认这类文章是有水平和深度的,但对于一个小白来说,看懂这些文章真的挺难的,除非数学功底深厚。

由于目前网上很少非常好的从0开始的入门教程,同时也想着把自己推导傅里叶变换的学习过程记录下来以免以后自己忘记,于是便写下了这篇文章。如果你正好想学习傅里叶变换,但担心数学太难看不懂,又或者你想快速学习到这门知识又不想花费时间啃教科书,那这篇文章绝对适合你!

2、什么是傅里叶变换

在正式开始数学推导之前呢,自然要让读者明白这个东西到底是干啥的?关于傅里叶变换的介绍,网上很多文章把科普这个事情做的很好,结合一些可视化图形,可以帮助读者更好地理解傅里叶变换。但我觉得傅里叶变换在做什么其实可以用很简单几句话就说清楚,不用绞尽脑汁地去理解。

首先明白一件事,所有的函数,都可以由一系列的正弦波加和而得到,这些正弦波可能频率不同,振幅不同,相位不同。正弦波是什么应该不用多说吧,在中学阶段学的sinx和cosx其实就是正弦波。而傅里叶变换做的事情就是把这一系列组成函数的正弦波一个个给找出来,就干了这么一件简单的事情!!!后面几节我会详细介绍傅里叶变换是怎么把这一系列的正弦波给找出来的。

3、三角函数的正交性

先引入三角函数系的概念,三角函数系本质上是一个集合(如下所示),n为任意自然数。其中的0和1可以被视为sin(0x)和cos(0x),此时n等于0。
{ 0 ,   1 ,   s i n x ,   c o s x ,   s i n 2 x ,   c o s 2 x ,   s i n 3 x ,   c o s 3 x ,   ⋯   ,   s i n ( n x ) ,   c o s ( n x ) } { \left\{ {0,\text{ }1,\text{ }sinx,\text{ }cosx,\text{ }sin2x,\text{ }cos2x,\text{ }sin3x,\text{ }cos3x,\text{ } \cdots ,\text{ }sin{ \left( {nx} \right) },\text{ }cos{ \left( {nx} \right) }} \right\} } {0,1,sinx,cosx,sin2x,cos2x,sin3x,cos3x,,sin(nx),cos(nx)}
所谓三角函数的正交性就是在上面这个集合中任意取两个不同的函数,这两个函数的乘积在-π到π上的积分值都为0(利用三角函数基本变换公式以及三角函数积化和差可以轻松证明),如下:
∫ − π π s i n ( n x ) c o s ( m x ) d x = 0 ,   n ∊ N ,   m ∊ N {{\mathop{ \int }\nolimits_{{- \pi }}^{{ \pi }}{sin{ \left( {nx} \right) }}}cos{ \left( {mx} \right) }dx=0,\text{ }n∊N,\text{ }m}∊N ππsin(nx)cos(mx)dx=0,nN,mN

∫ − π π c o s ( n x ) c o s ( m x ) d x = 0 ,   n ≠ m ,   n ∊ N ,   m ∊ N {{\mathop{ \int }\nolimits_{{- \pi }}^{{ \pi }}{cos{ \left( {nx} \right) }}}cos{ \left( {mx} \right) }dx=0,\text{ }n \neq m,\text{ }n∊N,\text{ }m}∊N ππcos(nx)cos(mx)dx=0,n=m,nN,mN

∫ − π π s i n ( n x ) s i n ( m x ) d x = 0 ,   n ≠ m ,   n ∊ N ,   m ∊ N   {{\mathop{ \int }\nolimits_{{- \pi }}^{{ \pi }}{sin{ \left( {nx} \right) }}}sin{ \left( {mx} \right) }dx=0,\text{ }n \neq m,\text{ }n∊N,\text{ }m}∊N\ ππsin(nx)sin(mx)dx=0,n=m,nN,mN 

注意,如果在三角函数系中取了两个同样的函数,那么这个两个函数的乘积在-π到π上的积分值需要特殊讨论,如下:
∫ − π π s i n ( n x ) s i n ( n x ) d x = π ,   n > 0 ,   n ∊ N {\mathop{ \int }\nolimits_{{- \pi }}^{{ \pi }}{sin{ \left( {nx} \right) }}}sin{ \left( {nx} \right) }dx= \pi ,\text{ }n > 0,\text{ }n∊N ππsin(nx)sin(nx)dx=π,n>0,nN

∫ − π π c o s ( n x ) c o s ( n x ) d x = π ,   n > 0 ,   n ∊ N {\mathop{ \int }\nolimits_{{- \pi }}^{{ \pi }}{cos{ \left( {nx} \right) }}}cos{ \left( {nx} \right) }dx= \pi ,\text{ }n > 0,\text{ }n∊N ππcos(nx)cos(nx)dx=π,n>0,nN

∫ − π π s i n ( 0 x ) s i n ( 0 x ) d x = 0 {\mathop{ \int }\nolimits_{{- \pi }}^{{ \pi }}{sin{ \left( {0x} \right) }}}sin{ \left( {0x} \right) }dx=0 ππsin(0x)sin(0x)dx=0

∫ − π π c o s ( 0 x ) c o s ( 0 x ) d x = 2 π {\mathop{ \int }\nolimits_{{- \pi }}^{{ \pi }}{cos{ \left( {0x} \right) }}}cos{ \left( {0x} \right) }dx=2 \pi ππcos(0x)cos(0x)dx=2π

4、周期为2π的函数展开为傅里叶级数

我们先来讨论周期函数,并且周期等于2π时函数如何展开傅里叶级数。周期为2π即T=2π,满足以下公式:
f ( x ) = f ( x + 2 π ) f{ \left( {x} \right) }=f{ \left( {x+2 \pi } \right) } f(x)=f(x+2π)
由傅里叶级数展开我们知道,函数总是可以表示成多个三角函数的和,即:
f ( x ) = a 0 2 + ∑ n = 1 ∞ a n c o s ( n x ) + ∑ n = 1 ∞ b n s i n ( n x )                   ( 1 ) {{f{ \left( x \right) }=\frac{{\mathop{{a}}\nolimits_{{0}}}}{{2}}+{\mathop{ \sum }\limits_{{n=1}}^{ \infty }{\mathop{{a}}\nolimits_{{n}}cos{ \left( {nx} \right) }}}+{\mathop{ \sum }\limits_{{n=1}}^{ \infty }{\mathop{{b}}\nolimits_{{n}}sin{ \left( {nx} \right) }\text{ }\text{ }\text{ }\text{ }\text{ }\text{ }\text{ }\text{ }\text{ }\text{ }\text{ }\text{ }}}}\text{ }\text{ }\text{ }\text{ } \left( 1 \right) } f(x)=2a0+n=1ancos(nx)+n=1bnsin(nx)(1)
这个展开式是简单并且直观的,重点在于如何获得到a0,a1,a2,…,an,b1,b2,…,bn的具体值是什么?

4.1 计算a0的值

计算a0的值是比较简单的,首先对(1)式两边从-π到π上积分,即:
∫ − π π f ( x ) d x = ∫ − π π a 0 2 d x + ∫ − π π ∑ n = 1 ∞ a n c o s ( n x ) d x + ∫ − π π ∑ n = 1 ∞ b 0 s i n ( n x ) d x {\mathop{ \int }\nolimits_{{- \pi }}^{ \pi }{f{ \left( x \right) }dx={\mathop{ \int }\nolimits_{{- \pi }}^{ \pi }{\frac{{a\mathop{{}}\nolimits_{{0}}}}{{2}}dx}}+{\mathop{ \int }\nolimits_{{- \pi }}^{ \pi }{{\mathop{ \sum }\limits_{{n=1}}^{ \infty }{\mathop{{a}}\nolimits_{{n}}cos{ \left( {nx} \right) }}}dx}}+{\mathop{ \int }\nolimits_{{- \pi }}^{ \pi }{{\mathop{ \sum }\limits_{{n=1}}^{ \infty }{b\mathop{{}}\nolimits_{{0}}}}sin{ \left( {nx} \right) }dx}}}} ππf(x)dx=ππ2a0dx+ππn=1ancos(nx)dx+ππn=1b0sin(nx)dx
上面这个式子的右边共有3个积分项,由在第一节介绍的三角函数的正交性可得后两个积分项的结果为0,所以:
∫ − π π f ( x ) d x = ∫ − π π a 0 2 d x = π a 0 {\mathop{ \int }\nolimits_{{- \pi }}^{{ \pi }}{f \left( x \left) dx\right. \right. }}={\mathop{ \int }\nolimits_{{- \pi }}^{{ \pi }}{\frac{{\mathop{{a}}\nolimits_{{0}}}}{{2}}dx}}= \pi \mathop{{a}}\nolimits_{{0}} ππf(x)dx=ππ2a0dx=πa0

⇒      a 0 = 1 π ∫ − π π f ( x ) d x                  ( 2 ) \Rightarrow \text{ }\text{ }\text{ }\text{ }\mathop{{a}}\nolimits_{{0}}=\frac{{1}}{{ \pi }}{\mathop{ \int }\nolimits_{{- \pi }}^{{ \pi }}{f \left( x \right) }}dx\text{ }\text{ }\text{ }\text{ }\text{ }\text{ }\text{ }\text{ }\text{ }\text{ }\text{ }\text{ }\text{ }\text{ }\text{ }\text{ } \left( 2 \right) a0=π1ππf(x)dx(2)

4.2 计算an的值

计算an的值分为两步,第一步对(1)式左右两边同时乘以cos(mx),其中m为自然数,第二步再对式子左右两边从-π到π上积分。首先来看第一步,左右两边同时乘以cos(mx)后得到:
∫ − π π f ( x ) c o s ( m x ) d x = ∫ − π π a 0 2 c o s ( m x ) d x + ∫ − π π ∑ n = 1 ∞ a n c o s ( n x ) c o s ( m x ) d x + ∫ − π π ∑ n = 1 ∞ b n s i n ( n x ) c o s ( m x ) d x {{\mathop{ \int }\nolimits_{{- \pi }}^{{ \pi }}{f \left( x \left) cos \left( mx \left) dx\right. \right. \right. \right. }}={\mathop{ \int }\nolimits_{{- \pi }}^{{ \pi }}{\frac{{\mathop{{a}}\nolimits_{{0}}}}{{2}}cos \left( mx \left) dx\right. \right. }}+}{\mathop{ \int }\nolimits_{{- \pi }}^{{ \pi }}{{\mathop{ \sum }\limits_{{n=1}}^{{ \infty }}{\mathop{{a}}\nolimits_{{n}}cos \left( nx \left) cos \left( mx \left) dx\right. \right. \right. \right. }}}}+{\mathop{ \int }\nolimits_{{- \pi }}^{{ \pi }}{{\mathop{ \sum }\limits_{{n=1}}^{ \infty }{\mathop{{b}}\nolimits_{{n}}sin \left( nx \left) cos \left( mx \left) dx\right. \right. \right. \right. }}}} ππf(x)cos(mx)dx=ππ2a0cos(mx)dx+ππn=1ancos(nx)cos(mx)dx+ππn=1bnsin(nx)cos(mx)dx
同样的,上式右边也有3个积分项,由三角函数的正交性可知第一项和第三项一定为0,所以有:
∫ − π π f ( x ) c o s ( m x ) d x = ∫ − π π ∑ n = 1 ∞ a n c o s ( n x ) c o s ( m x ) d x {{{\mathop{ \int }\nolimits_{{- \pi }}^{{ \pi }}{f \left( x \left) cos \left( mx \left) dx\right. \right. \right. \right. }}=}{\mathop{ \int }\nolimits_{{- \pi }}^{{ \pi }}{{\mathop{ \sum }\limits_{{n=1}}^{{ \infty }}{\mathop{{a}}\nolimits_{{n}}cos \left( nx \left) cos \left( mx \left) dx\right. \right. \right. \right. }}}}} ππf(x)cos(mx)dx=ππn=1ancos(nx)cos(mx)dx
接下来仔细观察一下上式,我们目的是得到an的值,由三角函数的正交性可知,在右式积分项中,只有当n=m时an才能保留下来,所以有:
∫ − π π f ( x ) c o s ( n x ) d x = ∫ − π π a n c o s ( n x ) c o s ( n x ) d x = π a n {{{\mathop{ \int }\nolimits_{{- \pi }}^{{ \pi }}{f \left( x \left) cos \left( nx \left) dx\right. \right. \right. \right. }}=}{\mathop{ \int }\nolimits_{{- \pi }}^{{ \pi }}{{{\mathop{{a}}\nolimits_{{n}}cos \left( nx \left) cos \left( nx \left) dx\right. \right. \right. \right. }}}}}= \pi \mathop{{a}}\nolimits_{{n}} ππf(x)cos(nx)dx=ππancos(nx)cos(nx)dx=πan
化简得到an:
a n = 1 π ∫ − π π f ( x ) c o s ( n x ) d x                  ( 3 ) \mathop{{a}}\nolimits_{{n}}=\frac{{1}}{{ \pi }}{\mathop{ \int }\nolimits_{{- \pi }}^{{ \pi }}{f \left( x \left) cos \left( nx \left) dx\right. \right. \right. \right. }}\text{ }\text{ }\text{ }\text{ }\text{ }\text{ }\text{ }\text{ }\text{ }\text{ }\text{ }\text{ }\text{ }\text{ }\text{ }\text{ } \left( 3 \right) an=π1ππf(x)cos(nx)dx(3)

4.3 计算bn的值

计算bn的方法与计算an的方法基本一样,唯一不同之处在于计算bn时应该在(1)式左右两边同时乘以sin(mx)。最后得到的bn的计算结果为:
b n = 1 π ∫ − π π f ( x ) s i n ( n x ) d x                  ( 4 ) \mathop{{b}}\nolimits_{{n}}=\frac{{1}}{{ \pi }}{\mathop{ \int }\nolimits_{{- \pi }}^{{ \pi }}{f \left( x \left) sin \left( nx \left) dx\right. \right. \right. \right. }}\text{ }\text{ }\text{ }\text{ }\text{ }\text{ }\text{ }\text{ }\text{ }\text{ }\text{ }\text{ }\text{ }\text{ }\text{ }\text{ } \left( 4 \right) bn=π1ππf(x)sin(nx)dx(4)

5、周期为2L的函数展开为傅里叶级数

在上面介绍了周期为2π的函数的傅里叶级数展开之后,自然而然就会想到如果函数的周期不为2π,那该如何展开傅里叶级数呢?这里我们假设函数的周期为2L,即函数满足:
f ( t ) = f ( t + 2 L ) f \left( t \left) =f \left( t+2L \right) \right. \right. f(t)=f(t+2L)
看似很难展开,但实际上学会展开周期为2π的函数之后,便可以轻松推导得到任意周期函数的傅里叶级数展开式,这其中只需要运用到一个我们在中学阶段就学过的简单数学技巧:换元。我们令:
x = π L t x=\frac{{ \pi }}{{L}}t x=Lπt
所以:
t = L π x                  ( 5 ) t=\frac{{L}}{ \pi }x\text{ }\text{ }\text{ }\text{ }\text{ }\text{ }\text{ }\text{ }\text{ }\text{ }\text{ }\text{ }\text{ }\text{ }\text{ }\text{ } \left( 5 \right) t=πLx(5)
因此可以有:
f ( t ) = f ( L π x ) = g ( x ) f{ \left( {t} \right) }=f{ \left( {\frac{{L}}{{ \pi }}x} \right) }=g{ \left( {x} \right) } f(t)=f(πLx)=g(x)
此时:
g ( x + 2 π ) = f ( L π ( x + 2 π ) ) = f ( L π x + 2 L ) = f ( L π x ) = g ( x ) g{ \left( {x+2 \pi } \right) }=f{ \left( {\frac{{L}}{{ \pi }}{ \left( {x+2 \pi } \right) }} \right) }=f{ \left( {\frac{{L}}{{ \pi }}x+2L} \right) }=f{ \left( {\frac{{L}}{{ \pi }}x} \right) }=g \left( x \right) g(x+2π)=f(πL(x+2π))=f(πLx+2L)=f(πLx)=g(x)
可见这时的g(x)就是一个以2π为周期的函数了,所以通过一个小小的变换和换元,可以把任意周期的函数f(t)转变成一个周期为2π的函数g(x)。而g(x)如何进行傅里叶级数展开我们已经在第二节中详细介绍了,即式子(1)、(2)、(3)和(4)。

下一步要做的就只是把(5)式代入进(1)、(2)、(3)、(4)式中。x和t的对应关系如下:
x = π L t x=\frac{{ \pi }}{{L}}t x=Lπt

c o s ( n x ) = c o s ( n π L t ) cos{ \left( {nx} \right) }=cos{ \left( {\frac{{n \pi }}{{L}}t} \right) } cos(nx)=cos(Lt)

s i n ( n x ) = s i n ( n π L t ) sin{ \left( {nx} \right) }=sin{ \left( {\frac{{n \pi }}{{L}}t} \right) } sin(nx)=sin(Lt)

g ( x ) = f ( t ) g \left( x \left) =f{ \left( {t} \right) }\right. \right. g(x)=f(t)

∫ − π π d x = ∫ − L L d ( π L t ) {\mathop{ \int }\nolimits_{{- \pi }}^{{ \pi }}{dx}}={\mathop{ \int }\nolimits_{{-L}}^{{L}}{d{ \left( {\frac{{ \pi }}{{L}}t} \right) }}} ππdx=LLd(Lπt)

1 π ∫ − π π d x = 1 π π L ∫ − L L d ( t ) = 1 L ∫ − L L d t \frac{{1}}{{ \pi }}{\mathop{ \int }\nolimits_{{- \pi }}^{{ \pi }}{dx}}=\frac{{1}}{{ \pi }}\frac{{ \pi }}{{L}}{\mathop{ \int }\nolimits_{{-L}}^{{L}}{d{ \left( {t} \right) }}}=\frac{{1}}{{L}}{\mathop{ \int }\nolimits_{{-L}}^{{L}}{dt}} π1ππdx=π1LπLLd(t)=L1LLdt

得到周期为2L的函数的傅里叶级数展开式:
f ( t ) = a 0 2 + ∑ n = 1 ∞ [ a n c o s ( n π L t ) + b n s i n ( n π L t ) ]                  ( 6 ) f{ \left( {t} \right) }=\frac{{\mathop{{a}}\nolimits_{{0}}}}{{2}}+{\mathop{ \sum }\limits_{{n=1}}^{{ \infty }}{{ \left[ {\mathop{{a}}\nolimits_{{n}}cos{ \left( {\frac{{n \pi }}{{L}}t} \right) }+\mathop{{b}}\nolimits_{{n}}sin{ \left( {\frac{{n \pi }}{{L}}t} \right) }} \right] }}}\text{ }\text{ }\text{ }\text{ }\text{ }\text{ }\text{ }\text{ }\text{ }\text{ }\text{ }\text{ }\text{ }\text{ }\text{ }\text{ } \left( 6 \right) f(t)=2a0+n=1[ancos(Lt)+bnsin(Lt)](6)
其中:
a 0 = 1 L ∫ − L L f ( t ) d t                  ( 7 ) \mathop{{a}}\nolimits_{{0}}=\frac{{1}}{{L}}{\mathop{ \int }\nolimits_{{-L}}^{{L}}{f{ \left( {t} \right) }dt}}\text{ }\text{ }\text{ }\text{ }\text{ }\text{ }\text{ }\text{ }\text{ }\text{ }\text{ }\text{ }\text{ }\text{ }\text{ }\text{ } \left( 7 \right) a0=L1LLf(t)dt(7)

a n = 1 L ∫ − L L f ( t ) c o s ( n π L t ) d t                 ( 8 ) \mathop{{a}}\nolimits_{{n}}=\frac{{1}}{{L}}{\mathop{ \int }\nolimits_{{-L}}^{{L}}{f{ \left( {t} \right) }cos{ \left( {\frac{{n \pi }}{{L}}t} \right) }dt}}\text{ }\text{ }\text{ }\text{ }\text{ }\text{ }\text{ }\text{ }\text{ }\text{ }\text{ }\text{ }\text{ }\text{ }\text{ } \left( 8 \right) an=L1LLf(t)cos(Lt)dt(8)

b n = 1 L ∫ − L L f ( t ) s i n ( n π L t ) d t                 ( 9 ) \mathop{{b}}\nolimits_{{n}}=\frac{{1}}{{L}}{\mathop{ \int }\nolimits_{{-L}}^{{L}}{f{ \left( {t} \right) }sin{ \left( {\frac{{n \pi }}{{L}}t} \right) }dt}}\text{ }\text{ }\text{ }\text{ }\text{ }\text{ }\text{ }\text{ }\text{ }\text{ }\text{ }\text{ }\text{ }\text{ }\text{ } \left( 9 \right) bn=L1LLf(t)sin(Lt)dt(9)

我们用T表示周期,有T=2L,所以:
ω = 2 π T = π L \omega =\frac{{2 \pi }}{{T}}=\frac{{ \pi }}{{L}} ω=T2π=Lπ
在工程上t往往表示时间,而时间t通常是没有负数的,所以可以换一种积分上下限:
∫ − L L d t = ∫ 0 2 L d t = ∫ 0 T d t {{\mathop{ \int }\nolimits_{{-L}}^{{L}}{dt}}}={\mathop{ \int }\nolimits_{{0}}^{{2L}}{dt}}={\mathop{ \int }\nolimits_{{0}}^{{T}}{dt}} LLdt=02Ldt=0Tdt
最后可以改写一下上面(6)、(7)、(8)、(9)式的表示形式,这也是大多数教科书里傅里叶级数的表示形式:
f ( t ) = a 0 2 + ∑ n = 1 ∞ [ a n c o s ( n ω t ) + b n s i n ( n ω t ) ]                  ( 10 ) f{ \left( {t} \right) }=\frac{{\mathop{{a}}\nolimits_{{0}}}}{{2}}+{\mathop{ \sum }\limits_{{n=1}}^{{ \infty }}{{ \left[ {a\mathop{{}}\nolimits_{{n}}cos{ \left( {n \omega t} \right) }+\mathop{{b}}\nolimits_{{n}}sin{ \left( {n \omega t} \right) }} \right] }}}\text{ }\text{ }\text{ }\text{ }\text{ }\text{ }\text{ }\text{ }\text{ }\text{ }\text{ }\text{ }\text{ }\text{ }\text{ }\text{ } \left( 10 \right) f(t)=2a0+n=1[ancos(t)+bnsin(t)](10)

a 0 = 2 T ∫ 0 T f ( t ) d t                  ( 11 ) \mathop{{a}}\nolimits_{{0}}=\frac{{2}}{{T}}{\mathop{ \int }\nolimits_{{0}}^{{T}}{f{ \left( {t} \right) }}}dt\text{ }\text{ }\text{ }\text{ }\text{ }\text{ }\text{ }\text{ }\text{ }\text{ }\text{ }\text{ }\text{ }\text{ }\text{ }\text{ } \left( 11 \right) a0=T20Tf(t)dt(11)

a n = 2 T ∫ 0 T f ( t ) c o s ( n ω t ) d t                  ( 12 ) \mathop{{a}}\nolimits_{{n}}=\frac{{2}}{{T}}{\mathop{ \int }\nolimits_{{0}}^{{T}}{f{ \left( {t} \right) }}}cos{ \left( {n \omega t} \right) }dt\text{ }\text{ }\text{ }\text{ }\text{ }\text{ }\text{ }\text{ }\text{ }\text{ }\text{ }\text{ }\text{ }\text{ }\text{ }\text{ } \left( 12 \right) an=T20Tf(t)cos(t)dt(12)

b n = 2 T ∫ 0 T f ( t ) s i n ( n ω t ) d t                  ( 13 ) \mathop{{b}}\nolimits_{{n}}=\frac{{2}}{{T}}{\mathop{ \int }\nolimits_{{0}}^{{T}}{f{ \left( {t} \right) }}}sin{ \left( {n \omega t} \right) }dt\text{ }\text{ }\text{ }\text{ }\text{ }\text{ }\text{ }\text{ }\text{ }\text{ }\text{ }\text{ }\text{ }\text{ }\text{ }\text{ } \left( 13 \right) bn=T20Tf(t)sin(t)dt(13)

因此对于任何周期为T的函数,都可以借由上面这4个公式进行傅里叶级数展开!

6、傅里叶级数的复数形式

注意!!!本小节是整篇文章最重要最核心的一节,一定要好好理解并体会!

注意!!!本小节是整篇文章最重要最核心的一节,一定要好好理解并体会!

注意!!!本小节是整篇文章最重要最核心的一节,一定要好好理解并体会!

掌握傅里叶级数的复数形式是下一步学习傅里叶变换的基础,如果读者在看到这里时并没有系统地学习过复变函数这门课程,请不用担心,这里只需要你记住那个被称作最完美的数学公式——欧拉公式
e i t = c o s ( t ) + i s i n ( t )                  ( 14 ) \mathop{{e}}\nolimits^{{it}}=cos \left( t \left) +isin \left( t \left) \text{ }\text{ }\text{ }\text{ }\text{ }\text{ }\text{ }\text{ }\text{ }\text{ }\text{ }\text{ }\text{ }\text{ }\text{ }\text{ } \left( 14 \right) \right. \right. \right. \right. eit=cos(t)+isin(t)(14)
我们先把欧拉公式中的t用-t替换,得到:
e − i t = c o s ( t ) − i s i n ( t )                  ( 15 ) \mathop{{e}}\nolimits^{{-it}}=cos \left( t \left) -isin \left( t \left) \text{ }\text{ }\text{ }\text{ }\text{ }\text{ }\text{ }\text{ }\text{ }\text{ }\text{ }\text{ }\text{ }\text{ }\text{ }\text{ } \left( 15 \right) \right. \right. \right. \right. eit=cos(t)isin(t)(15)
由式(14)和(15)联立可以解得:
c o s ( t ) = 1 2 ( e i t + e − i t )                  ( 16 ) cos{ \left( {t} \right) }=\frac{{1}}{{2}}{ \left( {\mathop{{e}}\nolimits^{{it}}+\mathop{{e}}\nolimits^{{-it}}} \right) }\text{ }\text{ }\text{ }\text{ }\text{ }\text{ }\text{ }\text{ }\text{ }\text{ }\text{ }\text{ }\text{ }\text{ }\text{ }\text{ } \left( 16 \right) cos(t)=21(eit+eit)(16)

s i n ( t ) = − 1 2 i ( e i t − e − i t )                  ( 17 ) sin{ \left( {t} \right) }=-\frac{{1}}{{2}}i{ \left( {\mathop{{e}}\nolimits^{{it}}-\mathop{{e}}\nolimits^{{-it}}} \right) }\text{ }\text{ }\text{ }\text{ }\text{ }\text{ }\text{ }\text{ }\text{ }\text{ }\text{ }\text{ }\text{ }\text{ }\text{ }\text{ } \left( 17 \right) sin(t)=21i(eiteit)(17)

要得到傅里叶级数的复数形式,就需要把式(16)和(17)代入进式子(10)中,此时:
f ( t ) = a 0 2 + ∑ n = 1 ∞ [ 1 2 a n ( e i n ω t + e − i n ω t ) − 1 2 i b n ( e i n ω t − e − i n ω t ) ] f{ \left( {t} \right) }=\frac{{\mathop{{a}}\nolimits_{{0}}}}{{2}}+{\mathop{ \sum }\limits_{{n=1}}^{{ \infty }}{{ \left[ {\frac{{1}}{{2}}\mathop{{a}}\nolimits_{{n}}{ \left( {\mathop{{e}}\nolimits^{{in \omega t}}+\mathop{{e}}\nolimits^{{-in \omega t}}} \right) }-\frac{{1}}{{2}}i\mathop{{b}}\nolimits_{{n}}{ \left( {\mathop{{e}}\nolimits^{{in \omega t}}-\mathop{{e}}\nolimits^{{-in \omega t}}} \right) }} \right] }}} f(t)=2a0+n=1[21an(einωt+einωt)21ibn(einωteinωt)]

= a 0 2 + ∑ n = 1 ∞ [ a n − i b n 2 e i n ω t + a n + i b n 2 e − i n ω t ] =\frac{{\mathop{{a}}\nolimits_{{0}}}}{{2}}+{\mathop{ \sum }\limits_{{n=1}}^{{ \infty }}{{ \left[ {\frac{{\mathop{{a}}\nolimits_{{n}}-i\mathop{{b}}\nolimits_{{n}}}}{{2}}\mathop{{e}}\nolimits^{{in \omega t}}+\frac{{\mathop{{a}}\nolimits_{{n}}+i\mathop{{b}}\nolimits_{{n}}}}{{2}}\mathop{{e}}\nolimits^{{-in \omega t}}} \right] }}} =2a0+n=1[2anibneinωt+2an+ibneinωt]

= a 0 2 + ∑ n = 1 ∞ a n − i b n 2 e i n ω t + ∑ n = 1 ∞ a n + i b n 2 e − i n ω t =\frac{{\mathop{{a}}\nolimits_{{0}}}}{{2}}+{\mathop{ \sum }\limits_{{n=1}}^{{ \infty }}{\frac{{\mathop{{a}}\nolimits_{{n}}-i\mathop{{b}}\nolimits_{{n}}}}{{2}}\mathop{{e}}\nolimits^{{in \omega t}}}}+{\mathop{ \sum }\limits_{{n=1}}^{ \infty }{\frac{{\mathop{{a}}\nolimits_{{n}}+i\mathop{{b}}\nolimits_{{n}}}}{{2}}\mathop{{e}}\nolimits^{{-in \omega t}}}} =2a0+n=12anibneinωt+n=12an+ibneinωt

对上式进行分析,等号右边共有3项,我们先对第1项进行如下改写:
a 0 2 = ∑ n = 0 0 a 0 2 e i n ω t \frac{{\mathop{{a}}\nolimits_{{0}}}}{{2}}={\mathop{ \sum }\limits_{{n=0}}^{{0}}{\frac{{\mathop{{a}}\nolimits_{{0}}}}{{2}}\mathop{{e}}\nolimits^{{in \omega t}}}} 2a0=n=002a0einωt
然后再改写右式第3项,我们把n用-n替换,同时改写求和符号的上下限:
∑ n = 1 + ∞ a n + i b n 2 e − i n ω t = ∑ n = − ∞ − 1 a − n + i b − n 2 e i n ω t {\mathop{ \sum }\limits_{{n=1}}^{{+ \infty }}{\frac{{\mathop{{a}}\nolimits_{{n}}+i\mathop{{b}}\nolimits_{{n}}}}{{2}}\mathop{{e}}\nolimits^{{-in \omega t}}}}={\mathop{ \sum }\limits_{{n=- \infty }}^{{-1}}{\frac{{\mathop{{a}}\nolimits_{{-n}}+i\mathop{{b}}\nolimits_{{-n}}}}{{2}}\mathop{{e}}\nolimits^{{in \omega t}}}} n=1+2an+ibneinωt=n=12an+ibneinωt
因此有:
f ( t ) = ∑ n = 0 0 a 0 2 e i n ω t + ∑ n = 1 + ∞ a n − i b n 2 e i n ω t + ∑ n = − ∞ − 1 a − n + i b − n 2 e i n ω t f{ \left( {t} \right) }={\mathop{ \sum }\limits_{{n=0}}^{{0}}{\frac{{\mathop{{a}}\nolimits_{{0}}}}{{2}}\mathop{{e}}\nolimits^{{in \omega t}}+{\mathop{ \sum }\limits_{{n=1}}^{{+ \infty }}{\frac{{\mathop{{a}}\nolimits_{{n}}-i\mathop{{b}}\nolimits_{{n}}}}{{2}}\mathop{{e}}\nolimits^{{in \omega t}}}}}}+{\mathop{ \sum }\limits_{{n=- \infty }}^{{-1}}{\frac{{a\mathop{{}}\nolimits_{{-n}}+i\mathop{{b}}\nolimits_{{-n}}}}{{2}}e\mathop{{}}\nolimits^{{in \omega t}}}} f(t)=n=002a0einωt+n=1+2anibneinωt+n=12an+ibneinωt
这时候我们发现,上式整体的求和上下限变成了从负无穷到正无穷,我们引入cn来使表达式变统一,得到:
f ( t ) = ∑ − ∞ + ∞ c n e i n ω t                  ( 18 ) f{ \left( {t} \right) }={\mathop{ \sum }\limits_{{- \infty }}^{{+ \infty }}{\mathop{{c}}\nolimits_{{n}}\mathop{{e}}\nolimits^{{in \omega t}}}}\text{ }\text{ }\text{ }\text{ }\text{ }\text{ }\text{ }\text{ }\text{ }\text{ }\text{ }\text{ }\text{ }\text{ }\text{ }\text{ } \left( 18 \right) f(t)=+cneinωt(18)
当 n = 0 时 ,      c n = a n 2                 ( 19 ) 当{n=0\text{时},\text{ }\text{ }\text{ }\text{ }\mathop{{c}}\nolimits_{{n}}}=\frac{{\mathop{{a}}\nolimits_{{n}}}}{{2}}\text{ }\text{ }\text{ }\text{ }\text{ }\text{ }\text{ }\text{ }\text{ }\text{ }\text{ }\text{ }\text{ }\text{ }\text{ }\text{ }\text{(}19\text{)} n=0,cn=2an19

当 n > 0 时 ,      c n = a n − i b n 2                 ( 20 ) 当{n\text{>}0\text{时},\text{ }\text{ }\text{ }\text{ }\mathop{{c}}\nolimits_{{n}}}=\frac{{\mathop{{a}}\nolimits_{{n}}-i\mathop{{b}}\nolimits_{{n}}}}{{2}}\text{ }\text{ }\text{ }\text{ }\text{ }\text{ }\text{ }\text{ }\text{ }\text{ }\text{ }\text{ }\text{ }\text{ }\text{ }\text{ }\text{(}20\text{)} n0,cn=2anibn20

当 n < 0 时 ,      c n = a − n + i b − n 2                 ( 21 ) 当{{n\text{<}0\text{时},\text{ }\text{ }\text{ }\text{ }\mathop{{c}}\nolimits_{{n}}}=\frac{{\mathop{{a}}\nolimits_{{-n}}+i\mathop{{b}}\nolimits_{{-n}}}}{{2}}\text{ }\text{ }\text{ }\text{ }\text{ }\text{ }\text{ }\text{ }\text{ }\text{ }\text{ }\text{ }\text{ }\text{ }\text{ }\text{ }\text{(}21\text{)}} n0,cn=2an+ibn21

现在把cn的具体值来计算一下,先看n=0时,将(11)式与(19)式联立,此时:
c n n = 0 = a 0 2 = 1 2 ⸳ 2 T ∫ 0 T f ( t ) d t = 1 T ∫ 0 T f ( t ) d t = 1 T ∫ 0 T f ( t ) e − i × 0 × ω t d t = 1 T ∫ 0 T f ( t ) e − i n ω t d t {{{\mathop{{\mathop{{c}}\nolimits_{{n}}}}\limits_{{n=0}}=\frac{{\mathop{{a}}\nolimits_{{0}}}}{{2}}=\frac{{1}}{{2}}⸳\frac{{2}}{{T}}}{\mathop{ \int }\nolimits_{{0}}^{{T}}{f{ \left( t \right) }dt}}=\frac{{1}}{{T}}{\mathop{ \int }\nolimits_{{0}}^{{T}}{f{ \left( t \right) }dt}}=\frac{{1}}{{T}}{\mathop{ \int }\nolimits_{{0}}^{{T}}{f{ \left( t \left) e\mathop{{}}\nolimits^{{-i \times 0 \times \omega t}}\right. \right. }dt}}}}=\frac{{1}}{{T}}{\mathop{ \int }\nolimits_{{0}}^{{T}}{f{ \left( t \left) e\mathop{{}}\nolimits^{{-in \omega t}}\right. \right. }dt}} n=0cn=2a0=21T20Tf(t)dt=T10Tf(t)dt=T10Tf(t)ei×0×ωtdt=T10Tf(t)einωtdt
然后再计算n>0时,cn的具体值,把式(12),(13)与式(20)联立:
c n n > 0 = 1 2 [ 2 T ∫ 0 T f ( t ) c o s ( n ω t ) d t − i 2 T ∫ 0 T f ( t ) s i n ( n ω t ) d t ] \mathop{{\mathop{{c}}\nolimits_{{n}}}}\limits_{{n > 0}}=\frac{{1}}{{2}}{ \left[ {\frac{{2}}{{T}}{\mathop{ \int }\nolimits_{{0}}^{{T}}{f{ \left( {t} \right) }cos{ \left( {n \omega t} \right) }dt}}-i\frac{{2}}{{T}}{\mathop{ \int }\nolimits_{{0}}^{{T}}{f{ \left( t \right) }sin{ \left( {n \omega t} \right) }dt}}} \right] } n>0cn=21[T20Tf(t)cos(t)dtiT20Tf(t)sin(t)dt]

= 1 T ∫ 0 T f ( t ) [ c o s ( n ω t ) − i s i n ( n ω t ) ] d t = 1 T ∫ 0 T f ( t ) [ c o s ( − n ω t ) + i s i n ( − n ω t ) ] d t =\frac{{1}}{{T}}{\mathop{ \int }\nolimits_{{0}}^{{T}}{f{ \left( {t} \right) }{ \left[ {cos{ \left( {n \omega t} \right) }-isin{ \left( {n \omega t} \right) }} \right] }dt}}=\frac{{1}}{{T}}{\mathop{ \int }\nolimits_{{0}}^{{T}}{f{ \left( {t} \right) }{ \left[ {cos{ \left( {-n \omega t} \right) }+isin{ \left( {-n \omega t} \right) }} \right] }dt}} =T10Tf(t)[cos(t)isin(t)]dt=T10Tf(t)[cos(t)+isin(t)]dt

可得:
c n n > 0 = 1 T ∫ 0 T f ( t ) e − i n ω t d t \mathop{{\mathop{{c}}\nolimits_{{n}}}}\limits_{{n > 0}}=\frac{{1}}{{T}}{\mathop{ \int }\nolimits_{{0}}^{{T}}{f{ \left( t \right) }\mathop{{e}}\nolimits^{{-in \omega t}}dt}} n>0cn=T10Tf(t)einωtdt

同样的当n<0时,把式(12),(13)与式(21)联立:

c n n < 0 = 1 2 [ 2 T ∫ 0 T f ( t ) c o s ( − n ω t ) d t + i 2 T ∫ 0 T f ( t ) s i n ( − n ω t ) d t ] \mathop{{\mathop{{c}}\nolimits_{{n}}}}\limits_{{n < 0}}=\frac{{1}}{{2}}{ \left[ {\frac{{2}}{{T}}{\mathop{ \int }\nolimits_{{0}}^{{T}}{f{ \left( t \right) }cos{ \left( {-n \omega t} \right) }dt}}+i\frac{{2}}{{T}}{\mathop{ \int }\nolimits_{{0}}^{{T}}{f{ \left( t \right) }sin{ \left( {-n \omega t} \right) }dt}}} \right] } n<0cn=21[T20Tf(t)cos(t)dt+iT20Tf(t)sin(t)dt]

= 1 T ∫ 0 T f ( t ) [ c o s ( − n ω t ) + i s i n ( − n ω t ) ] d t =\frac{{1}}{{T}}{\mathop{ \int }\nolimits_{{0}}^{{T}}{f{ \left( t \right) }{ \left[ {cos{ \left( {-n \omega t} \right) }+isin{ \left( {-n \omega t} \right) }} \right] }dt}} =T10Tf(t)[cos(t)+isin(t)]dt

可得:
c n n < 0 = 1 T ∫ 0 T f ( t ) e − i n ω t d t \mathop{{\mathop{{c}}\nolimits_{{n}}}}\limits_{{n < 0}}=\frac{{1}}{{T}}{\mathop{ \int }\nolimits_{{0}}^{{T}}{f{ \left( t \right) }\mathop{{e}}\nolimits^{{-in \omega t}}dt}} n0cn=T10Tf(t)einωtdt
到这里我们惊喜地发现,n不管是大于0,等于0还是小于0,用复数形式表示的cn都是一样的,这就非常的神奇和nb了,因为我们可以只用一个式子就把所有的系数表示出来,即:
c n = 1 T ∫ 0 T f ( t ) e − i n ω t d t                  ( 22 ) {c\mathop{{}}\nolimits_{{n}}=\frac{{1}}{{T}}{\mathop{ \int }\nolimits_{{0}}^{{T}}{f{ \left( t \right) }\mathop{{e}}\nolimits^{{-in \omega t}}dt}}}\text{ }\text{ }\text{ }\text{ }\text{ }\text{ }\text{ }\text{ }\text{ }\text{ }\text{ }\text{ }\text{ }\text{ }\text{ }\text{ } \left( 22 \right) cn=T10Tf(t)einωtdt(22)
到这里为止,对于一个周期为T的函数,我们就学会了如何用复数表示傅里叶级数了,即(18)式和(22)式。
f ( t ) = ∑ − ∞ + ∞ e i n ω t T ∫ 0 T f ( t ) e − i n ω t d t                 ( 23 ) f{ \left( {t} \right) }={\mathop{ \sum }\limits_{{- \infty }}^{{+ \infty }}{{\frac{{\mathop{{e}}\nolimits^{{in \omega t}}}}{{T}}{\mathop{ \int }\nolimits_{{0}}^{{T}}{f{ \left( t \right) }\mathop{{e}}\nolimits^{{-in \omega t}}dt}}}}}\text{ }\text{ }\text{ }\text{ }\text{ }\text{ }\text{ }\text{ }\text{ }\text{ }\text{ }\text{ }\text{ }\text{ }\text{ } \left( 23 \right) f(t)=+Teinωt0Tf(t)einωtdt(23)

7、傅里叶变换

前面做了这么多铺垫,都是为了在最后帮助读者来更好地理解傅里叶变换。在前面的讨论中我们只涉及了周期函数,那么自然而然就会想到如果函数不是周期性函数,那还能进行傅里叶展开吗?如果能又该如何计算呢?要解决这个问题,就需要用到傅里叶变换了。

我们先再来仔细看一看上一节分析的周期函数的傅里叶级数形式,也就是式(18)和式(22)。
f ( t ) = ∑ − ∞ + ∞ c n e i n ω t ,     ω = 2 π T                  ( 18 ) {f{ \left( t \right) }={\mathop{ \sum }\limits_{{- \infty }}^{{+ \infty }}{\mathop{{c}}\nolimits_{{n}}\mathop{{e}}\nolimits^{{in \omega t}}}}}\text{,}\text{ }\text{ }\text{ }\text{ } \omega =\frac{{2 \pi }}{{T}}\text{ }\text{ }\text{ }\text{ }\text{ }\text{ }\text{ }\text{ }\text{ }\text{ }\text{ }\text{ }\text{ }\text{ }\text{ }\text{ }\text{ }\text{(}18\text{)} f(t)=+cneinωtω=T2π(18)

c n = 1 T ∫ 0 T f ( t ) e − i n ω t d t                  ( 22 ) {c\mathop{{}}\nolimits_{{n}}=\frac{{1}}{{T}}{\mathop{ \int }\nolimits_{{0}}^{{T}}{f{ \left( t \right) }\mathop{{e}}\nolimits^{{-in \omega t}}dt}}}\text{ }\text{ }\text{ }\text{ }\text{ }\text{ }\text{ }\text{ }\text{ }\text{ }\text{ }\text{ }\text{ }\text{ }\text{ }\text{ } \left( 22 \right) cn=T10Tf(t)einωtdt(22)

上两式中的ω代表着函数f(t)的基频率。我们先观察一下(18)式,我们可以发现式子前面这个加和(∑)后面这个复指数(e^inωt)对任意周期函数的傅里叶级数来说,都是这样一个表达形式,所以可以把这俩想象成是一种规则,而真正区分开不同函数的实际上是中间这个系数cn,或者说cn定义了函数。然后再从另一个视角来看(22)式,我们把n的不同值代入(22)式之后会发现,本质上(22)式就是定义了很多个频率不同的三角函数,n值的不同对应了不同的频率。而(18)式做的事情实际上就是把(22)式所表示的所有频率不同的三角函数进行加和操作,加和后便得到了f(t)。通常来说我们会把(18)式称作函数的时域表示,而(22)式称作函数的频域表示,借由(22)式可以绘制函数f(t)的频谱图,所谓频谱图可以简单的理解为在一幅图像上把很多个频率不同的三角函数表示出来。这就是所谓的从不同角度看世界,在时域上你所看到的变幻莫测的世界,有没有可能也只是由频域上一系列固定频率的正弦波叠加而来呢?(bushi

好了,言归正传,我们前面说的都是周期函数,那么非周期函数又该怎么办呢?能否也找到一个一般的表达形式呢?我们继续来推导…非周期函数,也就是说它不重复,或者理解为它在无限久后才会重复,也就是:
T → ∞ T \to \infty T
回到(22)式,我们刚才说了(22)式实际上是代表了一系列频率不同的三角函数,现在假设我们得到了由(22)式绘制的频谱图,该频谱图以角频率为横坐标把这一系列的三角函数都表示了出来,那么频谱图上相邻的两个三角函数的△ω会等于:
Δ ω = ( n + 1 ) ω − n ω = ω = 2 π T                  ( 23 ) \Delta \omega ={ \left( {n+1} \right) } \omega -n \omega = \omega =\frac{{2 \pi }}{{T}}\text{ }\text{ }\text{ }\text{ }\text{ }\text{ }\text{ }\text{ }\text{ }\text{ }\text{ }\text{ }\text{ }\text{ }\text{ }\text{ } \left( 23 \right) Δω=(n+1)ω=ω=T2π(23)
可以看出对于周期函数来说,在频谱图上是以离散的形式表示出所有的三角函数的,并且相邻的间隔固定为△ω=2π/T。而随着T不断增大以致趋于无穷时,△ω也会不断变小以致趋于0。换句话说,在频谱图上,随着T不断增大,相邻的间隔就会不断变小且趋于0,此时频谱图就从离散的形式变成了连续的形式。

我们把(22)式代入(18)式,再用(23)式把1/T换成△ω/2π,得到:
f ( t ) = ∑ n = − ∞ + ∞ Δ ω 2 π ∫ − T 2 T 2 f ( t ) e − i n ω t d t × e i n ω t                 ( 24 ) {f{ \left( t \right) }={\mathop{ \sum }\limits_{{n=- \infty }}^{{+ \infty }}{\frac{{ \Delta \omega }}{{2 \pi }}{\mathop{ \int }\nolimits_{{\frac{{-T}}{{2}}}}^{{\frac{{T}}{{2}}}}{f{ \left( t \right) }\mathop{{e}}\nolimits^{{-in \omega t}}dt}} \times \mathop{{e}}\nolimits^{{in \omega t}}}}}\text{ }\text{ }\text{ }\text{ }\text{ }\text{ }\text{ }\text{ }\text{ }\text{ }\text{ }\text{ }\text{ }\text{ }\text{ }\text{ }\text{(}24\text{)} f(t)=n=+2πΔω2T2Tf(t)einωtdt×einωt24
注意此时T→∞了,我们现在要分析的是连续形式而不再是离散形式了,因此:
∫ − T 2 T 2 d t → 替换成 ∫ − ∞ + ∞ d t {\mathop{ \int }\nolimits_{{\frac{{-T}}{{2}}}}^{{\frac{{T}}{{2}}}}{dt}} \xrightarrow {\text{替}\text{换}\text{成}}{\mathop{ \int }\nolimits_{{- \infty }}^{{+ \infty }}{dt}} 2T2Tdt +dt

n ω → 替换成 ω n \omega \xrightarrow {\text{替}\text{换}\text{成}} \omega ω

∑ n = − ∞ + ∞ Δ ω → 替换成 ∫ − ∞ + ∞ d ω {\mathop{ \sum }\limits_{{n=- \infty }}^{{+ \infty }}{ \Delta \omega }} \xrightarrow {\text{替}\text{换}\text{成}}{\mathop{ \int }\nolimits_{{- \infty }}^{{+ \infty }}{d \omega }} n=+Δω +dω

对(24)式进行替换修改后得到:
f ( t ) = 1 2 π ∫ − ∞ + ∞ ( ∫ − ∞ + ∞ f ( t ) e − i ω t d t ) e i ω t d ω                  ( 25 ) f{ \left( {t} \right) }=\frac{{1}}{{2 \pi }}{\mathop{ \int }\nolimits_{{- \infty }}^{{+ \infty }}{{ \left( {{\mathop{ \int }\nolimits_{{- \infty }}^{{+ \infty }}{f{ \left( t \right) }\mathop{{e}}\nolimits^{{-i \omega t}}dt}}} \right) }\mathop{{e}}\nolimits^{{i \omega t}}d \omega }}\text{ }\text{ }\text{ }\text{ }\text{ }\text{ }\text{ }\text{ }\text{ }\text{ }\text{ }\text{ }\text{ }\text{ }\text{ }\text{ } \left( 25 \right) f(t)=2π1+(+f(t)etdt)etdω(25)
我们把(25)式括号部分单独拿出来,称作F(ω),这就是大名鼎鼎的傅里叶变换!!!
F ( ω ) = ∫ − ∞ + ∞ f ( t ) e − i ω t d t                  ( 26 ) F{ \left( { \omega } \right) }={{\mathop{ \int }\nolimits_{{- \infty }}^{{+ \infty }}{f{ \left( t \right) }\mathop{{e}}\nolimits^{{-i \omega t}}dt}}}\text{ }\text{ }\text{ }\text{ }\text{ }\text{ }\text{ }\text{ }\text{ }\text{ }\text{ }\text{ }\text{ }\text{ }\text{ }\text{ } \left( 26 \right) F(ω)=+f(t)etdt(26)
再用F(ω)替换(25)式的括号部分,得到:
f ( t ) = 1 2 π ∫ − ∞ + ∞ F ( ω ) e i w t d ω                  ( 27 ) f{ \left( {t} \right) }=\frac{{1}}{{2 \pi }}{\mathop{ \int }\nolimits_{{- \infty }}^{{+ \infty }}{F{ \left( { \omega } \right) }\mathop{{e}}\nolimits^{{iwt}}d \omega }}\text{ }\text{ }\text{ }\text{ }\text{ }\text{ }\text{ }\text{ }\text{ }\text{ }\text{ }\text{ }\text{ }\text{ }\text{ }\text{ } \left( 27 \right) f(t)=2π1+F(ω)eiwtdω(27)
(27)式被称做傅里叶变换的逆变换!!!

至此,傅里叶变换和傅里叶变换逆变换就全部推导出来了~~~

8、写到最后

如果读者能够从头到尾仔细看完我这篇文章,相信一定能帮助你更通透地理解傅里叶变换,并且可以用最基础的方法把它推导出来。看懂这篇文章很容易,但只有自己多演算多推导,才能真正地掌握。另外,这篇文章是仓促完成的,可能还存在一些纰漏(希望不存在),欢迎网友们批评指正~

  • 3
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 1
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

若风orz

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值