detectron2 DiffusionDet 训练自己的数据集

配环境
git clone https://github.com/ShoufaChen/DiffusionDet

# 创建环境
conda create -n diffusion python=3.9
conda activate diffusion
conda install pytorch==1.11.0 torchvision==0.12.0 torchaudio==0.11.0 cudatoolkit=11.3 -c pytorch
pip install opencv-python

# 安装detectron2
cd /data2/zy/DiffusionDet/
git clone https://github.com/facebookresearch/detectron2.git
python -m pip install -e detectron2

pip install timm # 不装就会报错 No module named 'timm' (diffusion) 
prepare datasets
mkdir -p datasets/coco
mkdir -p datasets/lvis

ln -s /path_to_coco_dataset/annotations datasets/coco/annotations
ln -s /path_to_coco_dataset/train2017 datasets/coco/train2017
ln -s /path_to_coco_dataset/val2017 datasets/coco/val2017
修改配置文件等

复制一份train_net.py,命名为train.py,在其中添加下列代码注册数据集

#引入以下注释
from detectron2.data import DatasetCatalog, MetadataCatalog
from detectron2.data.datasets.coco import load_coco_json
import pycocotools
#声明类别,尽量保持
CLASS_NAMES =["__background__","Inlet","Slightshort","Generalshort","Severeshort","Outlet"]
# 数据集路径
DATASET_ROOT = '/data2/zy/DiffusionDet/datasets/coco/'
ANN_ROOT = os.path.join(DATASET_ROOT, 'annotations')

TRAIN_PATH = os.path.join(DATASET_ROOT, 'train2017')
VAL_PATH = os.path.join(DATASET_ROOT, 'val2017')
TEST_PATH = os.path.join(DATASET_ROOT, 'test2017')

TRAIN_JSON = os.path.join(ANN_ROOT, 'instances_train2017.json')
VAL_JSON = os.path.join(ANN_ROOT, 'instances_val2017.json')
TEST_JSON = os.path.join(ANN_ROOT, 'instances_test2017.json')

# 声明数据集的子集
PREDEFINED_SPLITS_DATASET = {
    "coco_my_train": (TRAIN_PATH, TRAIN_JSON),
    "coco_my_val": (VAL_PATH, VAL_JSON),
}
#===========以下有两种注册数据集的方法,本人直接用的第二个plain_register_dataset的方式 也可以用register_dataset的形式==================
#注册数据集(这一步就是将自定义数据集注册进Detectron2)
def register_dataset():
    """
    purpose: register all splits of dataset with PREDEFINED_SPLITS_DATASET
    """
    for key, (image_root, json_file) in PREDEFINED_SPLITS_DATASET.items():
        register_dataset_instances(name=key,
                                   json_file=json_file,
                                   image_root=image_root)


#注册数据集实例,加载数据集中的对象实例
def register_dataset_instances(name, json_file, image_root):
    """
    purpose: register dataset to DatasetCatalog,
             register metadata to MetadataCatalog and set attribute
    """
    DatasetCatalog.register(name, lambda: load_coco_json(json_file, image_root, name))
    MetadataCatalog.get(name).set(json_file=json_file,
                                  image_root=image_root,
                                  evaluator_type="coco")

#=============================
# 注册数据集和元数据
def plain_register_dataset():
    #训练集
    DatasetCatalog.register("coco_my_train", lambda: load_coco_json(TRAIN_JSON, TRAIN_PATH))
    MetadataCatalog.get("coco_my_train").set(thing_classes=CLASS_NAMES,  # 可以选择开启,但是不能显示中文,这里需要注意,中文的话最好关闭
                                                    evaluator_type='coco', # 指定评估方式
                                                    json_file=TRAIN_JSON,
                                                    image_root=TRAIN_PATH)

    #DatasetCatalog.register("coco_my_val", lambda: load_coco_json(VAL_JSON, VAL_PATH, "coco_2017_val"))
    #验证/测试集
    DatasetCatalog.register("coco_my_val", lambda: load_coco_json(VAL_JSON, VAL_PATH))
    MetadataCatalog.get("coco_my_val").set(thing_classes=CLASS_NAMES, # 可以选择开启,但是不能显示中文,这里需要注意,中文的话最好关闭
                                                evaluator_type='coco', # 指定评估方式
                                                json_file=VAL_JSON,
                                                image_root=VAL_PATH)
# 查看数据集标注,可视化检查数据集标注是否正确,
#这个也可以自己写脚本判断,其实就是判断标注框是否超越图像边界
#可选择使用此方法
def checkout_dataset_annotation(name="coco_my_val"):
    #dataset_dicts = load_coco_json(TRAIN_JSON, TRAIN_PATH, name)
    dataset_dicts = load_coco_json(TRAIN_JSON, TRAIN_PATH)
    print(len(dataset_dicts))
    for i, d in enumerate(dataset_dicts,0):
        #print(d)
        img = cv2.imread(d["file_name"])
        visualizer = Visualizer(img[:, :, ::-1], metadata=MetadataCatalog.get(name), scale=1.5)
        vis = visualizer.draw_dataset_dict(d)
        #cv2.imshow('show', vis.get_image()[:, :, ::-1])
        cv2.imwrite('out/'+str(i) + '.jpg',vis.get_image()[:, :, ::-1])
        #cv2.waitKey(0)
        if i == 200:
            break

main中调用注册函数

def main(args):
    cfg = setup(args)
    register_dataset() # here to register
    if args.eval_only:
        model = Trainer.build_model(cfg)
        kwargs = may_get_ema_checkpointer(cfg, model)
        if cfg.MODEL_EMA.ENABLED:
            EMADetectionCheckpointer(model, save_dir=cfg.OUTPUT_DIR, **kwargs).resume_or_load(cfg.MODEL.WEIGHTS,
                                                                                              resume=args.resume)
        else:
            DetectionCheckpointer(model, save_dir=cfg.OUTPUT_DIR, **kwargs).resume_or_load(cfg.MODEL.WEIGHTS,
                                                                                           resume=args.resume)
        res = Trainer.ema_test(cfg, model)
        if cfg.TEST.AUG.ENABLED:
            res.update(Trainer.test_with_TTA(cfg, model))
        if comm.is_main_process():
            verify_results(cfg, res)
        return res

    trainer = Trainer(cfg)
    trainer.resume_or_load(resume=args.resume)
    return trainer.train()

在 DiffisionDet/configs 下新建demo.yaml,主要是修改batchsize和max_iter

_BASE_: "Base-DiffusionDet.yaml"
MODEL:
  WEIGHTS: "detectron2://ImageNetPretrained/torchvision/R-50.pkl"
  RESNETS:
    DEPTH: 50
    STRIDE_IN_1X1: False
  DiffusionDet:
    NUM_PROPOSALS: 100
    NUM_CLASSES: 5
DATASETS:
  TRAIN: ("coco_my_train",)
  TEST:  ("coco_my_val",)
SOLVER:
  IMS_PER_BATCH: 16
  BASE_LR: 0.000025
  STEPS: (5850, 7000)
  MAX_ITER: 7500
  # TOTAL_NUM_IMAGES / (IMS_PER_BATCH * NUM_GPUS) * num_epochs = MAX_ITER
  # 2000/(16*1)*60=7500 
INPUT:
  MIN_SIZE_TRAIN: (800,)
  CROP:
    ENABLED: False
  FORMAT: "RGB"
OUTPUT_DIR: ./OUTPUT/bs16
训练
 python train.py --num-gpus 1     --config-file configs/diffdet.coco.res50.yaml

评论 6
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值