Java环境安装(JDK,Eclipse,IDEA,Maven,tomcat,Git,mariadb)

本文详细介绍了Java开发环境的搭建,包括JDK的下载、安装与配置,Eclipse与IntelliJ IDEA的安装及基本使用,Maven的配置,Tomcat服务器的启动与配置,以及Git和MariaDB的安装。内容覆盖了Java开发的各个环节,是初学者入门的必备教程。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

JDK

概述

JDK是 Java 语言的软件开发工具包,主要用于移动设备、嵌入式设备上的java应用程序。JDK是整个java开发的核心。
它包含了:
1、 JAVA开发工具(jdk\bin)
2、 基础开发库(jdk\jre\lib\rt.jar)
3、 基础开发库的源码(jdk\src.zip)

JDK JRE JVM的关系

1、 JDK–Java Development Kit是针对Java开发员的产品,是整个Java的核心,包括了Java运行环境JRE、Java工具和Java基础类库。

2、 JRE–Java Runtime Environment是运行JAVA的运行时环境,包含JVM和Java核心类库。

3、 JVM–Java Virtual Machine,Java虚拟机的缩写,是整个java实现跨平台的最核心的部分,能够运行以Java语言写作的软件程序。
在这里插入图片描述

Java的”一次编写,处处运行”是如何实现的?

Java程序会被编译成字节码组成的class文件,这些字节码可以运行在任何平台,因此Java是平台独立的。

下载与安装

通过官方网站获取JDK:链接: link.http://www.oracle.com
也可以通过百度自行搜索资源。
下载完后进行安装,傻瓜式安装,下一步下一步即可。
注意:
1、 同时安装多个jdk时需要使用指定环境变量来确认使用的是哪个jdk
2、 安装路径不要有中文或者特殊符号如空格等。最好目录统一
3、 我们也提供了绿色解压版,不需要安装直接解压即可

配置环境变量

JAVA_HOME
该配置是要配置jdk的安装目录,来明确要使用哪个版本的jdk。
例如:我把jdk安装在了D:\Java\jdk7。配置如下:
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
PATH
在这里插入图片描述

目录介绍

在这里插入图片描述

Eclipse

概述

Eclipse 是一个开放源代码的、基于Java的可扩展开发平台。就其本身而言,它只是一个框架和一组服务,用于通过插件组件构建开发环境。
在这里插入图片描述

下载与安装

1、 官网下载并安装
2、 下载完整的打包文件(java ee企业版),直接解压就可以用

工作空间workspace

用来保存所有的开发文件和代码等,也可以切换工作空间

HelloWorld案例

创建day01工程
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

创建包

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

创建HelloWorld类

类名要符合驼峰命名法。
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

IDEA

概述

IDEA 全称是 IntelliJ,是 JetBrains 公司推出一个集成开发工具,是 Java 开发工
具中的翘楚,基于这个开发工具可以快速开发我们的Java相关项目。相对于其它开发工具,
IDEA 提供了更加强大的提示功能,全面的快捷键操作,模板代码以及快速的资源整合。

下载与安装

第一步:软件下载。打开 IDEA 官网 https://www.jetbrains.com/idea/ link.

第二步:解压安装。IDEA 下载以后需要进行安装进行使用。假如只是下载的解压版本,则
可以将其拷贝到非中文目录,

### LlamaIndex 多模态 RAG 实现 LlamaIndex 支持多种数据类型的接入与处理,这使得它成为构建多模态检索增强生成(RAG)系统的理想选择[^1]。为了实现这一目标,LlamaIndex 结合了不同种类的数据连接器、索引机制以及强大的查询引擎。 #### 数据连接器支持多样化输入源 对于多模态数据的支持始于数据收集阶段。LlamaIndex 的数据连接器可以从多个异构资源中提取信息,包括但不限于APIs、PDF文档、SQL数据库等。这意味着无论是文本还是多媒体文件中的内容都可以被纳入到后续的分析流程之中。 #### 统一化的中间表示形式 一旦获取到了原始资料之后,下一步就是创建统一而高效的内部表达方式——即所谓的“中间表示”。这种转换不仅简化了下游任务的操作难度,同时也提高了整个系统的性能表现。尤其当面对复杂场景下的混合型数据集时,良好的设计尤为关键。 #### 查询引擎助力跨媒体理解能力 借助于内置的强大搜索引擎组件,用户可以通过自然语言提问的形式轻松获得所需答案;而对于更复杂的交互需求,则提供了专门定制版聊天机器人服务作为补充选项之一。更重要的是,在这里实现了真正的语义级关联匹配逻辑,从而让计算机具备了一定程度上的‘认知’功能去理解和回应人类意图背后所蕴含的意义所在。 #### 应用实例展示 考虑到实际应用场景的需求多样性,下面给出一段Python代码示例来说明如何利用LlamaIndex搭建一个多模态RAG系统: ```python from llama_index import GPTSimpleVectorIndex, SimpleDirectoryReader, LLMPredictor, PromptHelper, ServiceContext from langchain.llms.base import BaseLLM import os def create_multi_modal_rag_system(): documents = SimpleDirectoryReader(input_dir='./data').load_data() llm_predictor = LLMPredictor(llm=BaseLLM()) # 假设已经定义好了具体的大型预训练模型 service_context = ServiceContext.from_defaults( chunk_size_limit=None, prompt_helper=PromptHelper(max_input_size=-1), llm_predictor=llm_predictor ) index = GPTSimpleVectorIndex(documents, service_context=service_context) query_engine = index.as_query_engine(similarity_top_k=2) response = query_engine.query("请描述一下图片里的人物表情特征") print(response) ``` 此段脚本展示了从加载本地目录下各类格式文件开始直到最终完成一次基于相似度排序后的top-k条目返回全过程。值得注意的是,“query”方法接收字符串参数代表使用者想要询问的内容,而在后台则会自动调用相应的解析模块并结合先前准备好的知识库来进行推理计算得出结论。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值