Social Recommendation with Implicit Social Influence

Social Recommendation with Implicit Social Influence

摘要

社交影响对社交推荐至关重要。目前基于影响的社交推荐关注在对观察到的社交联系的显式影响。然而,在实际情况下,隐性的社交影响也会以一种未被观察到的方式影响用户的偏好。在这项工作中,我们关注两种隐性影响:未观察到的人际关系的局部隐性影响,以及项目传播给用户的全局隐性影响。我们通过分别建模两种隐性影响,改进了最先进的基于GNN的社交推荐方法。局部隐性影响是通过预测未观察到的社交关系来实现的。全局隐性影响是通过定义每个项目的全局受欢迎程度和个性化项目对每个用户的受欢迎程度影响来实现的。在GCN网络中,整合显式和隐式影响,学习用户和项目在社交推荐中的社交嵌入。在Yelp上的实验结果初步证明了该模型的有效性。

介绍

社交推荐利用社交资源,如人际关系和影响,作为额外的信息来提高推荐的表现。社会同质化理论认为,有社会联系的人会相互影响,导致相似的兴趣。这个理论引起了基于影响的社交推荐的研究。在这个方向上,社交推荐系统使用用户的社交矩阵作为附信息来增强每个用户的嵌入学习,或者通过社交邻居来标准化用户的嵌入学习。这些方法考虑了每个用户的一阶邻居的影响,缓解了协同过滤模型的数据稀疏性问题。

然而,在社交网络中,用户不仅会受到一阶邻居的影响,还会受到高阶邻居的影响。近年来,人们研究了高阶邻居的影响。例如,DiffNet提出了一种具有分层影响传播的扩散网络模型来模拟社交推荐中的高阶递归社交扩散。DiffNet++通过根据连接用户社交网络和用户-项目兴趣网络来改进DiffNet。这样,就可以联合建模更高阶的社交影响和兴趣扩散,并进一步提高推荐的性能。

给定一个观察到的社交网络,目前的社会推荐方法已经模拟了用户之间的高阶显式影响,但忽略了隐式影响。最近的研究提出了隐式影响的模型,与此不同,我们将隐式影响定义为在给定的社交网络中没有观察到扩散路径的影响。此外,我们区分了两种隐性影响:局部隐性影响和全局隐性影响。局部隐性影响发生在两个未被观察到的社交关系的人之间。例如,他们有未知的离线关系,而不是观察到的在线联系,或者他们是不包含在当前数据的社交媒体上的朋友。全局隐式影响是通过不依赖于人际关系而传播社交影响的。例如,流行物品的影响发生在媒体广告中。

在本文中,我们提出了DiffNetLG(具有局部和全局隐性影响的传播神经网络):这个模型统一了显性和隐性社交影响来建模社交推荐。该模型结合了社交网络和兴趣网络。在组合网络中,局部隐性影响是通过预测未观察到的社交 关系来实现的,而全局隐性影响是通过定义每个项目的全局流行度来建模的。最后,在组合网络上,将显式影响和两种隐式社交影响联合建模在图卷积网络上,实现改进了用户和项目的嵌入表示。

总之,我们的主要贡献如下:
(1)我们提出在社交推荐中建模隐性的社交影响。局部和全局隐性社交影响分别被定义及建模,除了观察到的社交网络外,不需要额外的信息。
(2)改进了最先进的社交推荐图卷积网络模型,设计了一个连接社交网络和兴趣网络的统一模型,其中集成隐性和显性影响来学习用户和项目的嵌入。
(3)在真实数据集上的大量实验结果证明了所提模型的有效性。与表现最好的基线相比,在Top-10推荐上,HR指标提高了超过4%,NDCG指标提高了6%。

2、相关工作

社交影响对社会推荐的研究至关重要,根据社交影响理论,当信息在社交网络中传播时,网络中的用户就会受到社交关系的影响,导致社交邻居之间产生相似的偏好。在早期的研究中,社交影响往往以社会推荐中的社交正规化为代表。例如,TrustSVD将社交邻居的偏好作为对当前用户的辅助反馈,并在SVD++模型的基础上增加了社交邻居的信任影响。同样,SR通过引入因子向量来学习用户的社交矩阵,SocialMF认为用户的表示受朋友的影响,

除了正则化外,邻居的社交影响也可以在用户和项目的社交嵌入中表示,特别是使用图神经网络。例如,基于GCN的方法被证明比正则化更有效。在这些方法中,早期的研究集中在一阶邻居的建模影响上,如GraphRec。最近的研究探索了高阶影响,例如,PinSage通过结合随机游走和图卷积来学习节点嵌入,NGCF确定了消息传播与中心节点之间的关联,DiffNet根据用户的社交关系和历史行为模拟用户偏好。

除了显式影响外,还研究了不同的隐式影响。在社交正规化中引入了隐式影响。SoInp从信息传播的角度建模其中的隐式影响,这是从对同一项目的评分中推断出来的。通过在异构网络中元路径的嵌入来捕获隐式用户。

虽然基于GNN的社交推荐已经很好地模拟了显式的社交影响,但对未观察到的社交联系的隐性影响仍然是一个问题。在这项工作中,我们通过从局部和全局的角度建模隐式的社交影响,改进了最先进的基于GNN的社交推荐。

3 方法

3.1 问题陈述和总体框架

在社交推荐中,我们有用户集 𝑈(|𝑈|=𝑀)和项目集 𝑉(|𝑉|=𝑁)。用户的社交网络被定义为一个有向图 𝐺 𝑆 𝐺_𝑆 GS = <𝑈,𝑆>,其中𝑆∈ R 𝑀 × 𝑀 R^{𝑀×𝑀} RM×M是一个表示用户之间社交关系的矩阵。用户兴趣网络被定义为一个无向二部图 𝐺 𝐼 𝐺_𝐼 GI=<𝑈∪𝑉,𝑅>,其中𝑅∈ R 𝑀 × N R^{𝑀×N} RM×N是一个表示用户对项目的真实偏好的矩阵。此外,每个用户𝑎都与一个真实特征向量相关联,在用户特征矩阵𝑋 ∈ R d 1 × 𝑀 R^{d1×𝑀} Rd1×M 中表示为 𝑥 𝑎 𝑥_𝑎 xa。每个项目𝑖也与项目特征矩阵𝑌∈ R 𝑑 2 × N R^{𝑑2×N} Rd2×N中的特征向量 𝑦 𝑖 𝑦_𝑖 yi相关联。社交推荐任务是在𝑅∈ R 𝑀 × 𝑁 R_{𝑀×𝑁} RM×N中,根据给定的 𝐺 𝑆 𝐺_𝑆 GS 𝐺 I 𝐺_I GI、X和Y,预测用户对项目的未知偏好。

我们提出了DiffNetLG模型,如图1所示。 DiffNetLG有三个部分:融合层、社交和兴趣影响扩散层、评分预测层。通过获取输入,融合层融合了用户和项目的特征和自由嵌入向量。在社交和兴趣影响扩散层中,我们使用GCN来联合建模显式和隐式影响。**显性影响是通过在社交和兴趣网络中观察到的链接来建模的。对于隐式影响,我们通过预测未观察到的用户与用户之间的社交联系来建模局部隐性影响,这些联系在GCN学习的下一次迭代中被添加为观察到的联系。我们通过计算每个项目对所有用户的流行程度来建模全局隐式影响,并将其与项目对用户的显式影响相结合。**最后,通过训练项目的用户嵌入,评分预测层预测每个未观察到的用户-项目对的偏好得分。

在这里插入图片描述

3.2 显式影响建模

在DiffNetLG中,社交和兴趣网络中观察到的链接用图卷积网络中的边来建模。对观察到的显性影响进行扩散是通过对用户和项目在图中嵌入的迭代表示学习来建模的。

在学习的初始阶段,对于每个用户𝑎,融合一个自由嵌入向量 𝑝 𝑎 𝑝_𝑎 pa和相关的特征向量 𝑥 𝑎 𝑥_𝑎 xa。以融合向量 𝑢 𝑎 0 𝑢^0_𝑎 ua0作为𝑎的初始向量。同样,对于每一个项目𝑖,将自由嵌入向量 𝑞 𝑖 𝑞_𝑖 qi和相关的特征向量 𝑦 𝑖 𝑦_𝑖 yi融合为初始向量 v i 0 v^0_i vi0。通过输入用户和项目的初始潜在向量,递归地对用户和项目的潜在偏好在网络中的动态传播进行分层卷积建模。我们学习每个评论词的嵌入,并通过平均用户/项目的学习词向量,得到每个用户/项目的特征向量。此迭代步骤从𝑘=0开始,当递归达到预定义的深度𝐾层时结束。在我们的模型中,为了达到最佳效果,我们设置了𝐾=2。

对于每个项目𝑖,给定其第𝑘层嵌入 𝑣 i 𝑘 𝑣^𝑘_i vik,其对(𝑘+1)层的更新嵌入可以建模为:
在这里插入图片描述
其中 𝑢 𝑎 𝑘 𝑢^𝑘_𝑎 uak是用户𝑎的第𝑘层嵌入向量,Font metrics not found for font: .表示聚合权重,其中 𝑅 𝑖 𝑅_𝑖 Ri是对项目𝑖有评分的用户集。我们使用一个平均池化,它对所有的交互用户在第𝑘层的潜在嵌入执行一个平均操作。

对于每个用户𝑎, 𝑢 𝑎 𝑘 𝑢^𝑘_𝑎 uak代表他/她在第𝑘层的潜在嵌入。(𝑘+1)层用户的更新嵌入受两个方面影响: 社交网络的影响和兴趣网络的影响。设˜ 𝑝 𝑎 𝑘 + 1 𝑝^{𝑘+1}_𝑎 pak+1表示用户邻居对(𝑘+1)层的显式影响,˜ 𝑞 𝑎 + 𝐸 𝑘 + 1 𝑞^{𝑘+1}_{𝑎+𝐸} qa+Ek+1表示项目邻居对(𝑘+1)层的显式影响。显式影响将被建模为:
在这里插入图片描述
其中Font metrics not found for font: .表示在社交网络(𝑘+1)层中,用户𝑏对用户𝑎的影响权重,Font metrics not found for font: .表示兴趣网络(𝑘+1)层中,项目𝑖对用户𝑎的影响权重。 𝑆 𝑎 𝑆_𝑎 Sa 𝑅 𝑎 𝑅_𝑎 Ra分别是用户集𝑎和用户𝑎评分过的项目集。与Font metrics not found for font: .Font metrics not found for font: .Font metrics not found for font: .一样,使用平均池化来聚合用户和项目对𝑎的影响。

3.3 隐式影响建模

在本工作中,局部和全局隐式影响分别被建模和集成到用户和项目的嵌入学习中。

3.3.1 局部隐式影响
局部隐式影响发生在未被观察到的人际联系上。为了在DiffNetLG中包含隐式影响,我们采用链接预测技术来预测未观察到的人际联系。值得注意的是,在网络中,节点嵌入学习和链路预测的性能是密切依赖的。因此,在我们的GCN学习中,将𝐾层预测的人际链接作为观察链接添加到下一个训练过程中,使节点嵌入学习和链接预测相互受益。

在我们的算法中,未被观察到的链接出现的可能性那个是通过一对用户节点的嵌入向量之间的相似性来衡量的。具体地说,我们测量了在欧几里得空间中嵌入向量接近的两个向量之间的相似性。例如,在社交网络中,两个未连接的用户 𝑢 𝑖 𝑢_𝑖 ui 𝑢 𝑗 𝑢_𝑗 uj之间存在一个未被观察到的链接的可能性为:
在这里插入图片描述
其中, 𝑢 𝑖 𝐾 𝑢_𝑖^𝐾 uiK 𝑢 𝐾 𝑗 𝑢_𝐾^𝑗 uKj R 𝐷 R^𝐷 RD为用户节点 𝑢 𝑖 𝑢_𝑖 ui 𝑢 𝑗 𝑢_𝑗 uj的(第𝐾层)嵌入向量,D为向量的维度。我们设置了一个计算可能性的阈值(0.9),以识别未观察到的链接。

3.2.2 全局隐式影响
全局隐式影响被假设为每个项目对所有用户的传播影响。在本工作中,每个项目的全局隐式影响被作为一个受欢迎程度值被计算,它在GCN学习的每次迭代中进行更新,并与项目嵌入连接起来。项目𝑖的受欢迎程度 𝑝 𝑜 𝑝 𝑖 𝑝𝑜𝑝_𝑖 popi通过𝑖的链接用户与所有项目的链接用户的平滑比例来量化:在这里插入图片描述
其中, 𝑅 𝑖 𝑅_𝑖 Ri是链接到𝑖的用户集,而𝑉是所有项目的集合。为了个性化项目𝑖对每个用户的全局隐式影响,在每一层的影响迭代后,计算𝑖的嵌入与每个用户之间的余弦相似性。因此,项目𝑖对用户𝑎在(𝑘+1)层的全局隐式影响权重为:
在这里插入图片描述
然后,项目对𝑎在(𝑘+1)层的隐式影响可以表示为:
在这里插入图片描述
对于每个用户,等式2中的显式影响和等式4中的全局隐式影响。与权衡参数ˆ𝜆结合,用户𝑎的邻居项目对第(𝑘+1)层的聚合影响最终可以建模为:
在这里插入图片描述
3.4 融合方法与模型训练
在GCN训练中,给定项目𝑖的第𝑘层嵌入 𝑣 𝑖 𝑘 𝑣_𝑖^𝑘 vik,(𝑘+1)层的更新嵌入 𝑣 𝑖 𝑘 + 1 𝑣_𝑖^{𝑘+1} vik+1为:
在这里插入图片描述
其中 𝑣 ˜ 𝑖 𝑘 + 1 𝑣˜_𝑖^{𝑘+1} v˜ik+1通过公式(1)聚合邻居用户的嵌入。

给定用户𝑎的第𝑘层嵌入 𝑢 𝑎 𝑘 𝑢^𝑘_𝑎 uak,(𝑘+1)层的更新嵌入 𝑢 𝑎 𝑘 + 1 𝑢^{𝑘+1}_𝑎 uak+1同时受到社交和兴趣网络的影响:
在这里插入图片描述
其中,˜ 𝑝 𝑎 𝑘 + 1 𝑝^{𝑘+1}_𝑎 pak+1通过等式(2)聚合了𝑎的邻居用户的影响。˜ 𝑞 𝑎 𝑘 + 1 𝑞^{𝑘+1}_𝑎 qak+1通过等式(5)聚合项目对𝑎的影响。

经过𝐾次的迭代扩散过程,我们得到了在k= [0, 1, 2…, K]时,𝑢和𝑖的嵌入集 𝑢 𝑎 𝑘 𝑢^𝑘_𝑎 uak 𝑣 𝑖 𝑘 𝑣_𝑖^𝑘 vik。然后,对于每个用户𝑎,最终的嵌入表示为: u a f u_a^f uaf = [ 𝑢 𝑎 0 ∣ ∣ 𝑢 𝑎 1 ∣ ∣ . . . ∣ ∣ 𝑢 a K ] [𝑢^0_𝑎||𝑢^1_𝑎||...||𝑢^K_a] [ua0ua1...uaK],(连接每一层的嵌入)。同样,每个项目𝑖的最终嵌入是: v i f v_i^f vif = [ v i 𝑎 ∣ ∣ v i 𝑎 ∣ ∣ . . . ∣ ∣ v i 𝐾 ] [v_i^𝑎||v_i^𝑎||...||v_i^𝐾] [viavia...viK]。然后,预测的评分被建模为最终用户和项目嵌入之间的内积:
在这里插入图片描述
通过学习用户和项目的嵌入,使用基于成对排名的损失函数来优化社交推荐:
在这里插入图片描述
其中 𝑅 + 𝑅^+ R+是正样本集(观察到的用户项目对), 𝑅 − 𝑅^- R是负样本集(从R中随机抽样的未观察到的用户项目对)。𝜎(x)是sigmoid函数,Θ=[Θ1,Θ2]。在融合层的参数设置,Θ1=[𝑃,𝑄],Θ2=[𝐹, [ 𝑊 𝑘 ] 𝑘 = 0 𝐾 − 1 ] [𝑊^𝑘]_{𝑘=0}^{𝐾-1}] [Wk]k=0K1],𝜆是一个正则化参数,它控制用户和项目自由嵌入矩阵的复杂性。上述损失函数中的所有参数都是可微的。

4 实验

数据集。我们在广泛使用的Yelp1数据集上进行了实验,用户可以在那里交朋友并对餐馆评分。我们分别随机选择10%、10%和80%的数据用于测试、验证和训练。用户、项目、链接和评分数分别为17K、38K、143K、204K。链路密度为0.048%。

基线
我们将我们的模型与三组基线进行了比较,包括没有社交信息的经典CF模型(BPR[18],FM[17])、社交推荐模型(社会MF[7]、TrustSVD[4]、上下文MF[8],CNSR[24])建模一阶社交影响和最先进的基于GNN的社交推荐模型(SocialMF[3],PinSage[26],NGCF[21],DiffNet[23],DiffNet++[22])建模高阶社交影响。

对于我们提出的模型,除了局部和全局影响的主要DiffNetLG模型外,我们还研究了两个变体DiffNetL和DiffNetG的性能,它们分别只涉及局部和全局隐式。

评估指标 我们为每个用户推荐Top-N个项目,我们使用了两个流行的基于排名的指标:点击率(HR)和标准化折扣累积增益(NDCG)。HR衡量的是前N项列表中点击项目的百分比,NDCG更强调排名靠前的项目。我们对所有项目进行排序以计算指标值,并随机选择1000个用户未交互的未评级项目作为该用户的负样本。我们将这些负样本和相应的正样本(在测试集中)混合,以选择Top-N个候选项目。我们重复这个过程10次,并报告平均排名结果。

结果 不同嵌入大小为D和Top-N值的推荐结果分别如表1和表2所示。
在这里插入图片描述
在这里插入图片描述
结果表明,BPR和FM只使用观察到的用户项目评分矩阵,数据稀疏性较大。SocialMF、TrustSVD、ContextMF和CNSR通过使用一阶邻居用户作为辅助信息来缓解这个问题。GraphRec通过结合兴趣邻居实现了进一步的改进。除了一阶影响外,基于GCN的PinSage、NGCF和Diffnet还显示出建模高阶用户项目图或社交结构的优势。最新的DiffNet++集成了高阶用户项目图和社交结构,实现了最先进的性能。

在Diffnet中引入隐式影响,我们的模型在大多数情况下超过了所有基线,这验证了建模隐式影响的优势。此外,具有局部和全局隐影响的DiffNetLG超过了只涉及一个隐式影响的DiffNetL和DiffNetG,这表明了两种隐影响建模的必要性。此外,与使用注意力机制的Diffnet++相比,DiffNetLG具有更高的收敛速度和更短的时间。

5 结论

对于社交推荐,我们提出除了显式的社交影响外,还有两种对用户偏好的隐式影响进行建模。局部隐式影响通过预测未观察到的链接来建模,全局隐式影响通过对项目的个性化流行度来建模。显式和隐式影响通过统一的GCN网络进行递归更新,来优化用户和项目的社交嵌入。在Yelp的实验结果中,所提出的模型超过了最先进的基线。

  • 1
    点赞
  • 8
    收藏
    觉得还不错? 一键收藏
  • 3
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值