基于Power BI Desktop的电子产品综合数据分析案例

本文通过Power BI Desktop对电子产品销售数据进行深度分析,涵盖销售趋势、用户行为、产品表现及RFM模型。发现8月销售额达峰值,广东、上海、北京用户及销售额占比高,35-40岁用户订单金额低,新用户主要集中在4-5月,周六日和早高峰时段购物活跃。此外,手机销量远超其他产品,三星占据主导地位。
摘要由CSDN通过智能技术生成

1、项目简介

2、数据理解

表1:2020年各省人口数量表:

  • 地区:各个省份
  • 人口数:2020年各个省份的人口数

表2:电子产品销售表;

  • event_time:下单时间,包含其他内容,需要清洗;
  • order_id:订单编号
  • product_id:产品标号
  • category_id :类别编号,存在空值;
  • category_code :类别 ,存在空值 ;
  • brand :品牌
  • price :价格
  • user_id :用户编号
  • age :年龄
  • sex :性别
  • local:省份
  • buy_cnt:购买数量

3、数据清洗与处理

3.1、日期列处理

1) 拆分event_time列,提取日期、小时请添加图片描述
2)从日期列提取年、月、周几形成新列
在这里插入图片描述

3.2、缺失值处理

category_code列和brand列有缺失值,对于category_code,为了不影响其他维度分析,选择用‘E’填补。对于brand列,因缺失值较少,选择直接删除缺失值。
在这里插入图片描述

3.3、异常值处理

date列有异常值1970,且数据不多,选择筛选过滤
在这里插入图片描述
price和amount最小值为0,这类商品属于免费类的商品,不属于异常值。

3.4、新增列

1)新增订单金额列,订单金额(amount)=price*buy_cnt
2) 给年龄分组
在这里插入图片描述

4、数据分析

4.1、销售情况分析

从结果指标着手,利用多维度拆解方法,分析目前的销售现状:

1)按月份的销售趋势

在这里插入图片描述

八月之前都基本是处于上升状态,七月至八月上升速度达到最大,八月达到峰值,然后就开始下降。
八月前后销售额上升下降可能的原因:
活动
新增用户

2)各地区销售情况

在这里插入图片描述

销售额和销量在各地区的分布比列相似,排名前三的广东、上海、北京是其他地区销售额两倍以上,且其他地区间的销售额差距不明显。

3)各年龄段分析

在这里插入图片描述
35-40岁年龄段的订单金额低于其他年龄段,且与其他年龄段的差额大于其他各年龄段之间的差额。

4)新老用户销售情况

在这里插入图片描述
各地区和个年龄段的新老用户销售额占比波动不大,五月的新用户销售额占比达到最大,超过了50%,考虑可能是新用户数量增加导致。

5)销售额与销量的总体趋势

评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Z_PEIJIN

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值