training strategy

Solutions for Domain Shift 

self-supervised transfer learning strategy

E.g.1. ---gist: leveraging a confidence model to automatically generate a set of reliable training samples (pseudo-labels) for a target domain.
1. train a model using training dataset (source domain)
2. utilize the result of trained model (input) and the error map between the result of trained model and the ground truth (label) to train a confidence map model
3.test the trained model using test dataset (target domain) to obtain the predicted result and the predicted confidence map, which can be selected top K condifence (ranked by average confidence values) as samples to train the new model (SSL model---training in the target domain) using a confidence map-weighted CE loss
4. iterate N steps to refine the SSL model

cycle-consistency learning strategy

E.g.1. 
1. train a model using training dataset (source domain)
2. train a CycleGAN that harmonizes the conversion differences between source domain (S) and target domain (T)
3. using the trained and harmonized T->S generator to convert target domain into source domain, then leverage the trained model (source domain) to predict the result to alleviate the domain shift. 

Solutions for Task Shift

self-supervised transfer learning strategy

Self-supervised learning (SSL) can effectively learn feature representations from
unlabeled data by pre-training.

E.g.1

1. using the structural characteristic of the only known data to create pseudo-labels.
2. pre-train on some proxy tasks such as masked inpainting (masked image modeling), contrastive learning (e.g. barlow twins), rotation and so on to learn context representation.
3. transfer their knowledge into the target task (downstream task).

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值