余弦退火调整学习率

本文介绍了余弦退火法,一种在神经网络训练中使用的技巧,通过在训练初期提供高学习率加速学习,后期降低学习率促进模型稳定收敛,降低过拟合。使用PyTorch的CosineAnnealingLR实现示例给出。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

余弦退火法是一种用于调整神经网络训练过程中学习率的技术。它通过余弦函数来逐渐降低学习率,使得模型在训练后期能够更好地收敛,并减小震荡。以下是该方法的工作原理:

  1. 初始学习率设定:选择一个初始学习率 η m a x \eta_{max} ηmax和一个最小学习率 η m i n \eta_{min} ηmin

  2. 训练周期设定:设定一个周期 T m a x T_{max} Tmax,表示学习率从 η m a x \eta_{max} ηmax η m i n \eta_{min} ηmin 变化的周期。

  3. 余弦函数形式:学习率在周期内按余弦函数逐渐变化:

    η t = η m i n + 1 2 ( η m a x − η m i n ) ( 1 + cos ⁡ ( t ⋅ π T m a x ) ) \eta_t = \eta_{min} + \frac{1}{2} (\eta_{max} - \eta_{min}) (1 + \cos(\frac{t \cdot \pi}{T_{max}})) ηt=ηmin+21(ηmaxηmin)(1+cos(Tmaxtπ))

    其中 η t \eta_t ηt 表示在第 t t t 次迭代时的学习率。

  4. 周期性重复:当一个周期结束后,学习率可以继续按上述方式在新周期内进行调整,或保持在 η m i n \eta_{min} ηmin

该方法的优势在于:在训练初期提供较高的学习率,加速模型的学习,防止其陷入局部最小;在训练后期逐渐降低学习率,使模型能够稳定收敛到其找到的全局最小的最优点,并减少过拟合的风险。在这里插入图片描述

[torch.optim.lr_scheduler.CosineAnnealingLR](https://pytorch.org/docs/stable/generated/torch.optim.lr_scheduler.CosineAnnealingLR.html)
Parameters
 - optimizer (Optimizer) – Wrapped optimizer.
 - T_max (int) – Maximum number of iterations.
 - eta_min (float) – Minimum learning rate. Default: 0.
 - last_epoch (int) – The index of last epoch. Default: -1.
 - verbose (bool) –
     If True, prints a message to stdout for each update. Default: False.
     Note:Deprecated since version 2.2: verbose is deprecated. Please use get_last_lr() to access the learning rate.
# example
import torch
import torch.nn as nn
import torch.optim as optim
from torch.optim.lr_scheduler import CosineAnnealingLR

# 定义一个简单的模型
class SimpleModel(nn.Module):
    def __init__(self):
        super(SimpleModel, self).__init__()
        self.fc = nn.Linear(10, 1)

    def forward(self, x):
        return self.fc(x)

# 初始化模型、优化器和损失函数
model = SimpleModel()
optimizer = optim.Adam(model.parameters(), lr=0.01)
criterion = nn.MSELoss()

# 初始化余弦退火学习率调度器
scheduler = CosineAnnealingLR(optimizer, T_max=10, eta_min=0.0001)

# 简单的数据生成函数
def generate_data(batch_size):
    inputs = torch.randn(batch_size, 10)
    targets = inputs.sum(dim=1, keepdim=True)
    return inputs, targets

# 模拟训练过程
for epoch in range(20):  # 训练20个周期
    for _ in range(100):  # 每个周期内有100个批次
        inputs, targets = generate_data(32)  # 每个批次生成32个样本

        outputs = model(inputs)
        loss = criterion(outputs, targets)

        optimizer.zero_grad()
        loss.backward()
        optimizer.step()

    # 每个周期结束后更新学习率
    scheduler.step()

    print(f'Epoch {epoch+1}, Learning Rate: {scheduler.get_last_lr()[0]}, Loss: {loss.item()}')
<think>好的,用户想了解余弦退火在YOLO中的应用或实现方式。首先,我需要回忆一下余弦退火的基本概念。余弦退火是一种学习率调度方法,它通过余弦函数调整学习率,帮助模型在训练过程中跳出局部最优,可能找到更好的全局最优解。这在深度学习模型训练中很常见,尤其是在目标检测任务中,比如YOLO系列模型。 接下来,我需要确认YOLO的哪些版本可能使用了余弦退火。根据已有的知识,YOLOv4和YOLOv5的官方实现中确实采用了余弦退火作为学习率调度策略。例如,Ultralytics的YOLOv5在默认配置中使用了余弦退火,这可能是在训练过程中动态调整学习率的关键部分。 然后,用户可能想知道具体的实现方式。在PyTorch框架中,通常会使用`torch.optim.lr_scheduler.CosineAnnealingLR`或者`CosineAnnealingWarmRestarts`这样的调度器。例如,YOLOv5的代码中可能会在优化器设置之后定义调度器,根据训练的epoch数来调整学习率。代码示例可能包括设置初始学习率、总epoch数以及调整学习率的步骤。 另外,用户可能还关心余弦退火的优势。比如,它如何帮助模型收敛更快,避免陷入局部最小值,以及在不同阶段调整学习率对模型性能的影响。这部分需要结合YOLO的训练过程来解释,比如在初期使用较大的学习率快速下降,后期逐渐减小以微调模型参数。 同时,需要注意引用相关的资料。用户提供的引用[^1]是关于YOLO的Caffe实现,但余弦退火的实现可能在PyTorch版本的YOLO中更为常见,因此需要指出不同框架下的实现差异,并确保引用的准确性。 最后,用户可能有后续问题,比如如何调整余弦退火的参数,或者与其他学习率调度方法的比较。需要准备好相关的扩展问题,以帮助用户进一步理解。</think>在YOLO的实现中,余弦退火(Cosine Annealing)主要用于优化训练过程中的学习率调度。该技术通过遵循余弦曲线的周期性变化调整学习率,帮助模型跳出局部最优并提升收敛效果。以下是具体应用方式: ### 1. YOLO中的实现方式 在YOLOv4/YOLOv5的官方实现中,余弦退火通常与$warmup$策略结合使用: $$lr_t = \eta_{min} + \frac{1}{2}(\eta_{max} - \eta_{min})(1 + \cos(\frac{T_{cur}}{T_{max}}\pi))$$ 其中$\eta_{max}$为初始学习率,$\eta_{min}$为最小学习率,$T_{cur}$为当前epoch数,$T_{max}$为周期长度 **PyTorch实现示例**: ```python optimizer = torch.optim.SGD(model.parameters(), lr=0.1) scheduler = torch.optim.lr_scheduler.CosineAnnealingLR(optimizer, T_max=200) for epoch in range(300): train(...) scheduler.step() ``` ### 2. 技术优势 - 初期保持较大学习率快速收敛 - 后期精细调整参数 - 周期重置机制可突破局部最优 - 在COCO数据集训练中可提升0.5-1% mAP ### 3. 参数设置建议 - YOLOv5默认配置:`lr0=0.01`, `lrf=0.2` - 典型周期长度:总epoch数的0.8-1.2倍 - Warmup阶段:前3-5个epoch逐步提升学习率
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值