“ValueError: Sum of input lengths does not equal the length of the input dataset!”

本文解释了在PyTorch中使用random_split函数时遇到的ValueError,强调了确保子数据集长度总和等于原始数据集长度的重要性。提供了解决方案,包括直接加载预划分数据和从大集合中划分的示例。
摘要由CSDN通过智能技术生成

这个错误信息 “ValueError: Sum of input lengths does not equal the length of the input dataset!” 通常出现在使用 PyTorch 的 torch.utils.data.random_split 或类似的函数来划分数据集时,划分的子集总长度与原始数据集的长度不匹配。

在 PyTorch 中,当你想把一个大的数据集划分为几个小的子集(例如训练集、验证集和测试集)时,你需要确保这些子集的长度之和等于原始数据集的长度。例如,如果你的原始数据集有 1000 个样本,你想划分为训练集和验证集,那么这两个子集的长度之和也必须是 1000。

假设你已经有了三个分开的文件夹 train, test, val,并且你想要从 train 文件夹创建一个训练集和一个验证集。这里有两种处理方式:

  1. 如果你的 train, test, val 文件夹已经包含了准确划分的数据,那么你不需要再次划分。你可以分别从这三个文件夹加载数据:

    train_dataset = MyDataset('path/to/train')
    val_dataset = MyDataset('path/to/val')
    test_dataset = MyDataset('path/to/test')
    

    其中 MyDataset 是你定义的用于加载数据的类。

  2. 如果你只有一个大的数据集,需要划分,你应该这样操作:

    full_dataset = MyDataset('path/to/dataset')
    
    train_size = int(0.8 * len(full_dataset))
    val_size = int(0.1 * len(full_dataset))
    test_size = len(full_dataset) - train_size - val_size
    
    train_dataset, val_dataset, test_dataset = torch.utils.data.random_split(full_dataset, [train_size, val_size, test_size])
    

    这个例子中,假设你想要将数据集划分为 80% 训练集,10% 验证集,和 10% 测试集。

请根据你的实际情况选择合适的方法。如果你的数据已经预先划分好了,就直接从各自的文件夹中加载;如果你需要从一个大的数据集中划分,确保划分的大小之和等于原始数据集的大小。

### 回答1: 这个错误提示意味着你尝试将一个长度不匹配的值列表赋给一个索引列表,导致出现了错误。可能的原因包括: 1. 你的值列表长度不正确,可能比索引列表长或短。 2. 你的索引列表长度不正确,可能比值列表长或短。 3. 你的值列表和索引列表都存在错误,导致它们的长度不匹配。 要解决这个问题,你需要检查你的代码,确保你的值列表和索引列表长度相同,并且它们的顺序正确。如果你仍然无法解决问题,请提供更多的上下文和代码,以便我们更好地帮助你。 ### 回答2: 这个错误信息的意思是,在Pandas中进行了一个操作,比如说合并数据或者给一个Series赋值时,输入的数据的长度和索引的长度不一致,从而导致了这个错误的出现。 比如说,如果我们有两个DataFrame,df1和df2,它们的列数和列名都一样,但是行数不同。如果我们想要把它们合并成一个新的DataFrame,就可以使用Pandas中的concat()函数。但是如果我们在合并的时候,df1和df2的行数不一样,就会出现这个valueerror错误。这是因为concat函数要求输入的两个DataFrame中,行数必须一致才能进行合并操作。 还有一种情况是,在处理一个Series时,我们想要给其中的一部分数据重新赋值。如果我们给它的赋值数据的长度和Series的索引长度不一致,也会出现这个错误。比如,我们有一个数据Series,s1,它有10个数据,我们想把其中的前5个数据全部替换成0。但是如果我们的赋值数据只有3个,就会出现这个错误。 解决这个错误的方法,一般就是检查输入的数据长度和索引长度是否一致。如果不一致,就需要手动调整数据或者索引,使它们的长度一致。另外一个解决方法是,使用Pandas中提供的一些函数,比如dropna()函数可以删除数据中的缺失值,reindex()函数可以重新排列Series或DataFrame中的数据,等等。这些函数可以帮助我们快速地调整数据和索引长度,从而避免这个valueerror错误的出现。 ### 回答3: 这个错误是因为在 pandas 中,数据的长度不匹配导致的。例如,如果你正在尝试将一个长度为 3 的数组分配给一个长度为 4 的列,则会出现这个错误。 有几种情况可能会导致这个错误: 1. 列的长度与数据长度不匹配 – 如果你尝试将值分配给一列,但它们的长度不同,就会出现这个错误。 2. 行的数量与数据长度不匹配 – 如果你尝试将值赋给行,但是行的数量与数据长度不一致,也会出现这个错误。 3. 索引与数据长度不匹配 – 如果你尝试将数据赋给 DataFrame,但索引与数据长度不一致,也会出现这个错误。 为了解决这个错误,你需要确保数据的长度与要分配数据的列的长度匹配。还要确保 DataFrame 的索引与数据的长度匹配。 例如,如果 DataFrame 中有 4 列,但你想要为其中的一列分配一个长度为 3 的数组,则你需要在这个数组中插入一个额外的值,以确保数组的长度与 DataFrame 中列的数量相同。 总之,这个错误的原因是长度的错误匹配。做一些数据分析时,确保 DataFrame、Series 或数据都准备好了,即确定它们的长度和相应的数据类型,可以避免这样的错误。
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值