Leetcode 684 Redundant Connection
题目原文
In this problem, a tree is an undirected graph that is connected and has no cycles.
The given input is a graph that started as a tree with N nodes (with distinct values 1, 2, ..., N), with one additional edge added. The added edge has two different vertices chosen from 1 to N, and was not an edge that already existed.
The resulting graph is given as a 2D-array of edges
. Each element of edges
is a pair [u, v]
with u < v
, that represents an undirected edge connecting nodes u
and v
.
Return an edge that can be removed so that the resulting graph is a tree of N nodes. If there are multiple answers, return the answer that occurs last in the given 2D-array. The answer edge [u, v]
should be in the same format, with u < v
.
Example 1:
Input: [[1,2], [1,3], [2,3]]
Output: [2,3]
Explanation: The given undirected graph will be like this:
1
/ \
2 - 3
Example 2:
Input: [[1,2], [2,3], [3,4], [1,4], [1,5]]
Output: [1,4]
Explanation: The given undirected graph will be like this:
5 - 1 - 2
| |
4 - 3
Note:
- The size of the input 2D-array will be between 3 and 1000.
- Every integer represented in the 2D-array will be between 1 and N, where N is the size of the input array.
题意分析
给定义一组点之间的链接关系,表示一个图,该图是由一棵树添加一条边得到的,添加边以前没有,因此一定得到一个圈。本题是无向图。
解法分析
本题采用了两种方法,
- 深度优先搜索
- Union Find(并查集)
深度优先搜索
该方法沿着树的一条路往下走,先保存第一个连接对的两个元素于set中,并将该对从集合中删除,重新遍历连接对集合,如果下一个连接对两个元素都在set中,说明走出了一个回路,返回该对即为结果;如果有一个元素在set中,则可以延这条路继续走,并将该对删除;如果两个都不在set中,则可以暂时跳过。C++代码如下:
class Solution {
public:
vector<int> findRedundantConnection(vector<vector<int>>& edges) {
unordered_set<int> attened;
vector<int> res;
if(edges.size()<3)
return res;
attened.insert(edges[0][0]);
attened.insert(edges[0][1]);
for(int i=1;i<edges.size();i++){
if(attened.count(edges[i][0])&&attened.count(edges[i][1]))
return edges[i];
else if((!attened.count(edges[i][0]))&&(!attened.count(edges[i][1])))
continue;
else{
if(attened.count(edges[i][0]))
attened.insert(edges[i][1]);
else
attened.insert(edges[i][0]);
edges.erase(edges.begin()+i);
i=0;
}
}
}
};
Union Find
并查集可以根据已经Union后形成的连接情况判断两个点是否连接,同时也可以在Union过程中判断两个点是否连接,以避免重复添加连接关系使他们连接成圈。本题最后添加的那个使得树产生圈的边就可以通过边union边检测的方式检查出来。C++代码如下:
class Solution {
public:
int find(int a,int *P){
int res=a;
while(res!=P[res])
res=P[res];
return res;
}
vector<int> findRedundantConnection(vector<vector<int>>& edges) {
int *parent=new int[edges.size()+1];
for(int i=1;i<=edges.size();i++){
parent[i]=i;
}
for(auto e:edges){
if(find(e[0],parent)==find(e[1],parent))
return e;
parent[find(e[1],parent)]=find(e[0],parent);
}
}
};
union过程中是将find得到的根节点间确定新的父子关系。