P2627 修剪草坪 [单调队列优化dp]

修 剪 草 坪 修剪草坪

题目描述见链接 .


正 解 部 分 \color{red}{正解部分}

连续的工作的牛不超过 K K K → \rightarrow i i i 头牛若工作, 则左边与其 相距最近的不工作的牛 坐标范围为 [ i − K , i ] [i-K, i] [iK,i] .
所以可以想到 d p dp dp, 设 F [ i , 1 / 0 ] F[i, 1/0] F[i,1/0] 表示前 i i i 头牛, 第 i i i 头牛 工作/不工作 所能得到的最大价值,
状 态 转 移 状态转移 :
F [ i , 0 ] = max ⁡ ( F [ i − 1 , 0 ] , F [ i − 1 , 1 ] ) F [ i , 1 ] = max ⁡ ( F [ j , 0 ] + s u m [ i ] − s u m [ j ] ) = max ⁡ ( F [ j , 0 ] − s u m [ j ] ) + s u m [ i ]        ( j ∈ [ i − K , i ] ) F[i, 0] = \max(F[i-1, 0], F[i-1, 1])\\ F[i, 1] = \max(F[j, 0] + sum[i]-sum[j]) = \max(F[j,0]-sum[j])+sum[i]\ \ \ \ \ \ (j ∈ [i-K,i]) F[i,0]=max(F[i1,0],F[i1,1])F[i,1]=max(F[j,0]+sum[i]sum[j])=max(F[j,0]sum[j])+sum[i]      (j[iK,i])
其中 F [ i , 0 ] − s u m [ j ] F[i, 0] - sum[j] F[i,0]sum[j] 可以使用 单调队列 优化 .


实 现 部 分 \color{red}{实现部分}

#include<bits/stdc++.h>
#define reg register
typedef long long ll;

const int maxn = 1e5 + 5;

int N;
int K;
int A[maxn];

ll sum[maxn];
ll F[maxn][2];

int main(){
        scanf("%d%d", &N, &K);
        for(reg int i = 1; i <= N; i ++) scanf("%d", &A[i]), sum[i] = sum[i-1] + A[i];
        std::deque <int> Q;
        Q.push_front(0);
        for(reg int i = 1; i <= N; i ++){
                F[i][0] = std::max(F[i-1][0], F[i-1][1]);
                int l = std::max(0, i-K);
                while(!Q.empty() && Q.front() < l) Q.pop_front();
                if(Q.empty()) F[i][1] = A[i];
                else F[i][1] = F[Q.front()][0] - sum[Q.front()] + sum[i];
                while(!Q.empty() && F[Q.back()][0] - sum[Q.back()] <= F[i][0] - sum[i]) Q.pop_back();
                Q.push_back(i);
        }
        printf("%lld\n", std::max(F[N][0], F[N][1]));
        return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值