修 剪 草 坪 修剪草坪 修剪草坪
题目描述见链接 .
正 解 部 分 \color{red}{正解部分} 正解部分
连续的工作的牛不超过
K
K
K 个
→
\rightarrow
→ 第
i
i
i 头牛若工作, 则左边与其 相距最近的不工作的牛 坐标范围为
[
i
−
K
,
i
]
[i-K, i]
[i−K,i] .
所以可以想到
d
p
dp
dp, 设
F
[
i
,
1
/
0
]
F[i, 1/0]
F[i,1/0] 表示前
i
i
i 头牛, 第
i
i
i 头牛 工作/不工作 所能得到的最大价值,
状
态
转
移
状态转移
状态转移:
F
[
i
,
0
]
=
max
(
F
[
i
−
1
,
0
]
,
F
[
i
−
1
,
1
]
)
F
[
i
,
1
]
=
max
(
F
[
j
,
0
]
+
s
u
m
[
i
]
−
s
u
m
[
j
]
)
=
max
(
F
[
j
,
0
]
−
s
u
m
[
j
]
)
+
s
u
m
[
i
]
(
j
∈
[
i
−
K
,
i
]
)
F[i, 0] = \max(F[i-1, 0], F[i-1, 1])\\ F[i, 1] = \max(F[j, 0] + sum[i]-sum[j]) = \max(F[j,0]-sum[j])+sum[i]\ \ \ \ \ \ (j ∈ [i-K,i])
F[i,0]=max(F[i−1,0],F[i−1,1])F[i,1]=max(F[j,0]+sum[i]−sum[j])=max(F[j,0]−sum[j])+sum[i] (j∈[i−K,i])
其中
F
[
i
,
0
]
−
s
u
m
[
j
]
F[i, 0] - sum[j]
F[i,0]−sum[j] 可以使用 单调队列 优化 .
实 现 部 分 \color{red}{实现部分} 实现部分
#include<bits/stdc++.h>
#define reg register
typedef long long ll;
const int maxn = 1e5 + 5;
int N;
int K;
int A[maxn];
ll sum[maxn];
ll F[maxn][2];
int main(){
scanf("%d%d", &N, &K);
for(reg int i = 1; i <= N; i ++) scanf("%d", &A[i]), sum[i] = sum[i-1] + A[i];
std::deque <int> Q;
Q.push_front(0);
for(reg int i = 1; i <= N; i ++){
F[i][0] = std::max(F[i-1][0], F[i-1][1]);
int l = std::max(0, i-K);
while(!Q.empty() && Q.front() < l) Q.pop_front();
if(Q.empty()) F[i][1] = A[i];
else F[i][1] = F[Q.front()][0] - sum[Q.front()] + sum[i];
while(!Q.empty() && F[Q.back()][0] - sum[Q.back()] <= F[i][0] - sum[i]) Q.pop_back();
Q.push_back(i);
}
printf("%lld\n", std::max(F[N][0], F[N][1]));
return 0;
}