BZOJ4919 大根堆 [树上LIS]

大 根 堆 大根堆

题目描述见链接 .


正 解 部 分 \color{red}{正解部分}

树上 L I S LIS LIS 问题,

使用 std::multiset<int> st 维护当前子树内所有可能的 L I S LIS LIS 结尾, 从前往后 L I S LIS LIS结尾 对应的长度递增 .

子树之间互不影响, 只需考虑子树根节点 u u u 对子树内的影响, 类比 序列 L I S LIS LIS 的做法,

  • w u w_u wust中为没有出现过的最大值, 则直接加入 st中 .
  • 否则考虑将 w u w_u wu 作为一个新的可能的 L I S LIS LIS结尾, 替换掉前面某个正好 大于等于 w u w_u wu L I S LIS LIS结尾 . (此时 L I S LIS LIS总长度 并没有变化)

实 现 部 分 \color{red}{实现部分}

#include<bits/stdc++.h>
#define reg register

int read(){
        char c;
        int s = 0, flag = 1;
        while((c=getchar()) && !isdigit(c))
                if(c == '-'){ flag = -1, c = getchar(); break ; }
        while(isdigit(c)) s = s*10 + c-'0', c = getchar();
        return s * flag;
}

const int maxn = 200005;

int N;
int M;
int num0;
int A[maxn];
int head[maxn];

std::multiset <int> st[maxn];
std::multiset <int>::iterator it;

struct Edge{ int nxt, to; } edge[maxn << 1];

void Add(int from, int to){ edge[++ num0] = (Edge){ head[from], to }; head[from] = num0; }

void DFS(int k, int fa){
        for(reg int i = head[k]; i; i = edge[i].nxt){
                int to = edge[i].to;
                if(to == fa) continue ;
                DFS(to, k);
                if(st[to].size() > st[k].size()) std::swap(st[k], st[to]);
                for(it = st[to].begin(); it != st[to].end(); it ++) st[k].insert(*it);
                st[to].clear();
        }
        it = st[k].lower_bound(A[k]);
        if(it != st[k].end()) st[k].erase(it);
        st[k].insert(A[k]);
}

int main(){
        N = read();
        for(reg int i = 1; i <= N; i ++){
                A[i] = read(); int x = read();
                if(!x) continue ;
                Add(x, i), Add(i, x);
        }
        DFS(1, 0); printf("%d\n", st[1].size());
        return 0;
}
  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
题目描述 有一个 $n$ 个点的棋盘,每个点上有一个数字 $a_i$,你需要从 $(1,1)$ 走到 $(n,n)$,每次只能往右或往下走,每个格子只能经过一次,路径上的数字和为 $S$。定义一个点 $(x,y)$ 的权值为 $a_x+a_y$,求所有满足条件的路径中,所有点的权值和的最小值。 输入格式 第一行一个整数 $n$。 接下来 $n$ 行,每行 $n$ 个整数,表示棋盘上每个点的数字。 输出格式 输出一个整数,表示所有满足条件的路径中,所有点的权值和的最小值。 数据范围 $1\leq n\leq 300$ 输入样例 3 1 2 3 4 5 6 7 8 9 输出样例 25 算法1 (树形dp) $O(n^3)$ 我们可以先将所有点的权值求出来,然后将其看作是一个有权值的图,问题就转化为了在这个图中求从 $(1,1)$ 到 $(n,n)$ 的所有路径中,所有点的权值和的最小值。 我们可以使用树形dp来解决这个问题,具体来说,我们可以将这个图看作是一棵树,每个点的父节点是它的前驱或者后继,然后我们从根节点开始,依次向下遍历,对于每个节点,我们可以考虑它的两个儿子,如果它的两个儿子都被遍历过了,那么我们就可以计算出从它的左儿子到它的右儿子的路径中,所有点的权值和的最小值,然后再将这个值加上当前节点的权值,就可以得到从根节点到当前节点的路径中,所有点的权值和的最小值。 时间复杂度 树形dp的时间复杂度是 $O(n^3)$。 C++ 代码 算法2 (动态规划) $O(n^3)$ 我们可以使用动态规划来解决这个问题,具体来说,我们可以定义 $f(i,j,s)$ 表示从 $(1,1)$ 到 $(i,j)$ 的所有路径中,所有点的权值和为 $s$ 的最小值,那么我们就可以得到如下的状态转移方程: $$ f(i,j,s)=\min\{f(i-1,j,s-a_{i,j}),f(i,j-1,s-a_{i,j})\} $$ 其中 $a_{i,j}$ 表示点 $(i,j)$ 的权值。 时间复杂度 动态规划的时间复杂度是 $O(n^3)$。 C++ 代码

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值