一道暴力的题目
Japan Regional 2014:Cornecing
发现其实只要把每一个圆向周围能走的圆做切线,并以此类推,找出所有的两个圆之间的切线,并把所有切点记为关键点。如果两个两个相邻的关键点在同一个圆上,则直接走,否则就判断连接这两点的直线是否经过一个圆,未就走否则不走。做一个暴搜就行了qwq学长大人都说会很麻烦(TLE)
首先在讲神奇的材料时,讲到了凸包附加向量(莫名由二维变成三维)
我想弄明白那个诡异的加水站怎么用dp做的,于是我厚着脸皮去问一下学长大人。原来是学长随性写的,所以不小心写错了“`莫名的尴尬,这让学弟们怎么抄笔记啊!不过学长说dp[i][j]=min(dp[i+1][j+1]+abs(Ai-Bj),dp[i][j+1])学长说他是从后面看的,虽然至今不知道从后面和前面看有什么区别,感觉学长大人好随性啊!不过学长说还可以用这一种dp打(万一WA了就尴尬了)dp[i][j]=min(dp[i-1][j-1]+abs(Ai-Bj),dp[i][j-1])
PS:请路过大牛教我一下这两串代码区别在哪啊啊?!!!
神奇的车票问题:这是一道神奇的计算几何题,其中莫名涉及了Burnside和Polya的定理,对于50%的算法就是用O(n^4)枚举h,w,还有边界情况。
今晚一开始讲得是精度问题double,long double
double存的是符号,数位,最好50几位是数值,大概能存10^-12的样子
long double存得和double一样,但能存10^-18~19的样子
//但要注意小心由于精度eps选择不当而导致掉了一些数值没存,因此对于eps使用很重要!
后面陆续补上一些今天上课讲的“计算几何”的内容,感觉这个学长很高冷啊!(感觉好像所有学长都是这样)
1.点积/叉积
2.三维凸包选讲(感觉超难!)
//接下来排头的是出自题目
EC Final 2015-Convex Polyhedron//一个有关三维凸包投影面积的问题
WF 2008 H 一直想弄清楚凸包到底怎么用!感觉在二维里很重要!
WF 2016 H
Board Game AMPPZ-2015
Garden Jagiellonian Contest 2013
就是确定一个凸包后化为正方形即可,先保证所有点已被凸包所包围,然后再找2-4个点在边上(疑惑,是否存在无解的可能?)
学长大人说要找一个向量v来定角度?f[0]=-f[90]
Grand Prix of Siberia,2014 Faster Than Light
//判定小木棒在动不了其实就是两点确定一条直线
//感觉代码量会超大!!!
望大家和我们一起讨论这种难题!qwq,加油!
Thanks for your attention.