2025.5.4机器学习笔记:PINN文献阅读

2025.5.4周报

  • 文献阅读
    • 题目信息
    • 摘要
    • 创新点
    • 网络架构
    • 实验
    • 结论
    • 不足以及展望

文献阅读

题目信息

  • 题目: Physics-Informed Neural Network Approach for Solving the One-Dimensional Unsteady Shallow-Water Equations in Riverine Systems
  • 期刊: Journal of Hydraulic Engineering
  • 作者: Zeda Yin, S.M.ASCE; Jimeng Shi; Linlong Bian, S.M.ASCE; William H. Campbell; Sumit R. Zanje, S.M.ASCE; Beichao Hu; and Arturo S. Leon, M.ASCE
  • 发表时间: 2025
  • 文章链接: https://ascelibrary.org/doi/epdf/10.1061/JHEND8.HYENG-13572

摘要

数值方法在求解非线性偏微分方程时,实际应用中存在一定困难。传统机器学习和深度学习模型依赖大量高质量训练数据,数据成本高且难度大。此外,这些模型多为黑箱模型,计算过程难以解释。尽管PINN近年来在多个领域取得成功,但在浅水方程及水文学和水力学领域的应用研究仍不充分。现有研究多集中于求解其他偏微分方程,且在考虑地形信息和摩擦的明渠水流问题上,尚无有效的PINN框架。基于以上背景,本论文提出一种新的PINN框架,为水系统工程问题提供更有效的解决方案。本论文的PINN框架,包括前向步骤、损失函数构建和反向步骤,还对其进行改进以解决大规模问题。通过两个案例验证,结果表明PINN能准确预测流速、流量和水位,且可进行位置和时间外推,但存在训练时间长和泛化性不足的局限。

创新点

该论文使用的PINN是无数据方法,不受数据获取难题限制。且PINN将物理规律数学表达式融入框架,能进行位置和时间外推,提升极端条件下可靠性。

网络架构

SVE由质量守恒方程和动量守恒方程组成,适用于任意形状的横截面,可写为:
∂ U ∂ t + ∂ F ∂ x = S \frac{\partial \mathbf{U}}{\partial t} + \frac{\partial \mathbf{F}}{\partial x} = \mathbf{S} tU+xF=S
其中,向量变量定义为:
U = [ A Q ] , F = [ Q Q 2 A + g I 1 ] , S = [ 0 g A ( S 0 − S f ) ] \mathbf{U} = \begin{bmatrix} A \\ Q \end{bmatrix}, \quad \mathbf{F} = \begin{bmatrix} Q \\ \frac{Q^2}{A} + g I_1 \end{bmatrix}, \quad \mathbf{S} = \begin{bmatrix} 0 \\ g A (S_0 - S_f) \end{bmatrix} U=[AQ],F=[QAQ2+gI1],S=[0gA(S0Sf)]
A: 横截面湿周面积;Q: 横截面流量; g I 1 g I_1 gI1 : 静水推力; S f S_f Sf:摩擦坡度; S 0 S_0 S0:地形高程坡度;t: 时间;x: 空间坐标。
其中:
g ∂ I 1 ∂ x = g A ∂ h ∂ x g \frac{\partial I_1}{\partial x} = g A \frac{\partial h}{\partial x} gxI1=gAxh
摩擦坡度通过Manning方程计算:
S f = ( n v K R 0.667 ) 2 S_f = \left( \frac{n v}{K R^{0.667}} \right)^2 Sf=(KR0.667nv)2
地形高程坡度为:
S 0 = − d z d x S_0 = -\frac{d z}{d x} S0=dxdz
其中
n: Manning粗糙系数;v: 横截面流速;K: 单位转换因子;R: 水半径;z: 河床高程。
以上是用向量表示,拆开来第一行(即质量守恒),第二行(动量守恒)简化就是如下图所示:

在这里插入图片描述
论文的PINN结构如下:
输入: 输入为空间x和时间t

输出: 为流速𝑣及水位h

结构: 全连接多层感知器,8个隐藏层,每层80个隐藏单元,ReLU激活函数。
在这里插入图片描述
由于横截面形状复杂,参数(A,P,R,B)无法解析计算。
论文基于DEM数据,采用数值方法计算。

DEM(Digital Elevation Model,数字高程模型)是一种表示地表高程的数字化数据集,通常以网格或点云的形式存储。
它记录了地表在特定位置(通常以经纬度或投影坐标表示)的海拔高度
广泛应用于地理信息系统、水文建模、地形分析、洪水模拟等领域。
DEM数据可以描述地形特征,如河床、坡度、山谷等,对于模拟水流、洪水传播和地形相关计算至关重要。

DEM提供离散采样点,每个点包含横截面距离a和高程b。
然后将高程值转换为相对于预测水深的坐标,如下图所示:
在这里插入图片描述
湿周面积A通过梯形规则积分高程和距离:
A = − ∑ i = 1 n − 1 ( b i + 1 + b i ) ∗ ( a i + 1 − a i ) 2 A = -\sum_{i=1}^{n-1} \frac{(b_{i+1} + b_i) * (a_{i+1} - a_i)}{2} A=i=1n12(bi+1+bi)(ai+1ai)
湿周周长P累加相邻点间的欧几里得距离:
P = ∑ i = 1 n − 1 ( a i + 1 − a i ) 2 + ( b i + 1 − b i ) 2 P = \sum_{i=1}^{n-1} \sqrt{(a_{i+1} - a_i)^2 + (b_{i+1} - b_i)^2} P=i=1n1(ai+1ai)2+(bi+1bi)2
水面半径R和顶部宽度B直接从A,P和边界点计算:
R = A P R = \frac{A}{P} R=PA
B = a m − a k B = a_m - a_k B=amak
损失函数: 损失函数包括上游边界、下游边界、质量方程和动量方程损失组成。
由于各部分量级差异,比如,水位h为102而偏导数 ∂ h ∂ t \frac{\partial h}{\partial t} th为10-3-10-8,直接求和会导致优化偏向某些分量。每个损失分量乘以权重( W 1 − W 4 W_1 −W_4 W1W4),使其量级接近,权重通过边界条件的量级和网格划分,如下图所示:
在这里插入图片描述
L total = W 1 L up b c + W 2 L down b c + W 3 L physics m a s s + W 4 L physics m o m e n t u m \mathcal{L}_{\text{total}} = W_1 \mathcal{L}_{\text{up}_{bc}} + W_2 \mathcal{L}_{\text{down}_{bc}} + W_3 \mathcal{L}_{\text{physics}_{mass}} + W_4 \mathcal{L}_{\text{physics}_{momentum}} Ltotal=W1Lupbc+W2Ldownbc+W3Lphysicsmass+W4Lphysicsmomentum
PDE残差项基于SVE:
L physics = 1 N physics ∑ i = 1 N physics ∣ ∂ U ∂ t + ∂ F ∂ x − S ∣ 2 \mathcal{L}_{\text{physics}} = \frac{1}{N_{\text{physics}}} \sum_{i=1}^{N_{\text{physics}}} \left| \frac{\partial \mathbf{U}}{\partial t} + \frac{\partial \mathbf{F}}{\partial x} - \mathbf{S} \right|^2 Lphysics=Nphysics1i=1NphysicstU+xFS2
上游边界条件损失:
L up b c = 1 N up b c ∑ i = 1 N up b c ∣ v ^ b c − v b c ∣ 2 \mathcal{L}_{\text{up}_{bc}} = \frac{1}{N_{\text{up}_{bc}}} \sum_{i=1}^{N_{\text{up}_{bc}}} \left| \hat{v}_{bc} - v_{bc} \right|^2 Lupbc=Nupbc1i=1Nupbcv^bcvbc2
下游边界条件损失:
L down b c = 1 N down b c ∑ i = 1 N down b c ∣ h ^ b c − h b c ∣ 2 \mathcal{L}_{\text{down}_{bc}} = \frac{1}{N_{\text{down}_{bc}}} \sum_{i=1}^{N_{\text{down}_{bc}}} \left| \hat{h}_{bc} - h_{bc} \right|^2 Ldownbc=Ndownbc1i=1Ndownbch^bchbc2
其中:
N physics {N_{\text{physics}}} Nphysics为配点总数; N up b c {N_{\text{up}_{bc}}} Nupbc N down b c {N_{\text{down}_{bc}}} Ndownbc上下游边界点数; W 1 − W 4 W_1 −W_4 W1W4为权重;

实验

实验采用多阶段训练策略,如下图所示:
分阶段优化边界和物理方程,模拟了先确定边界再求解内部场的逻辑,加速收敛。论文将训练分为三个阶段优化。
第一阶段为放大边界条件权重,优先优化边界收敛。
第二阶段则平衡权重,降低学习率,优化SVE残差。
第三阶段略微增加SWEs权重,进一步提高精度。
在这里插入图片描述
论文通过假设和实际场景研究展示了PINN框架求解一维非定常浅水方程的性能,具体结果如下:

  1. 假设的均匀梯形渠道中流量和水位突然变化的场景
    PINN框架和HEC - RAS输出的速度和水位剖面吻合良好,所有横截面速度和水位的平均绝对误差分别为0.002743 m/s和0.001219 m。
    在这里插入图片描述
    PINN能高精度求解流量基一维浅水方程,预测水位的平均绝对误差与速度基PINN相近,约为0.0012 m,但流量的平均绝对误差比速度大,这是因为流量尺度更大且未进行归一化。
    在这里插入图片描述

  2. 休斯顿赛普拉斯溪下游的实际案例
    PINN框架和HEC - RAS输出对比,流量预测的平均绝对误差在0.0833 - 0.10083 m³/s之间,水位预测的平均绝对误差在0.0152 - 0.079 m之间,PINN输出趋势对流量和水位略有低估。
    在这里插入图片描述
    通过追踪内部横截面在每次迭代中的损失函数值,发现存在全局最小值,证明PINN框架理论上可获得一维浅水方程的小残差解。
    在这里插入图片描述
    PINN在计算域内的位置外推结果准确,平均绝对误差甚至小于非外推预测结果。
    在这里插入图片描述
    在计算域外进行外推测试,与边界位置的结果无显著差异,表明PINN可在域外进行合理外推。
    在这里插入图片描述
    以水位站记录的历史数据为参考,对未来30小时进行外推,外推结果的平均绝对误差与非外推预测相似,趋势与历史曲线拟合良好。
    在这里插入图片描述

代码如下:

import tensorflow as tf
import numpy as np
import matplotlib.pyplot as plt
from uuid import uuid4

# 设置随机种子,确保可重复性
tf.random.set_seed(42)
np.random.seed(42)

g = 9.81  # 重力加速度 (m/s^2)
n = 0.013  # Manning粗糙系数
K = 1.0  # 单位转换因子(SI单位)

def compute_hydraulic_params(h, x):
    # 假设梯形横截面:底宽2m,边坡1:1
    b0 = 2.0  # 底宽
    z = 1.0   # 边坡
    A = h * (b0 + z * h)  # 湿周面积
    P = b0 + 2 * h * tf.sqrt(1 + z**2)  # 湿周周长
    R = A / P  # 液压半径
    B = b0 + 2 * z * h  # 顶部宽度
    S0 = -0.001  # 假设地形坡度
    return A, P, R, B, S0

# 定义神经网络模型
class PINN(tf.keras.Model):
    def __init__(self):
        super(PINN, self).__init__()
        # 8层全连接网络,每层80个单元,ReLU激活
        self.layers_list = [tf.keras.layers.Dense(80, activation='relu') for _ in range(8)]
        self.output_layer = tf.keras.layers.Dense(2)  #v(流速),h(水位)

    def call(self, inputs):
        x, t = inputs[:, 0:1], inputs[:, 1:2]
        X = tf.concat([x, t], axis=1)
        for layer in self.layers_list:
            X = layer(X)
        return self.output_layer(X)  # [v, h]

# 计算物理残差
def compute_physics_loss(model, x, t):
    with tf.GradientTape(persistent=True) as tape:
        tape.watch([x, t])
        inputs = tf.concat([x, t], axis=1)
        vh = model(inputs)  
        v, h = vh[:, 0:1], vh[:, 1:2]
        # 一阶偏导数
        dv_dx = tape.gradient(v, x)
        dh_dx = tape.gradient(h, x)
        dh_dt = tape.gradient(h, t)
    
        A, P, R, B, S0 = compute_hydraulic_params(h, x)
        # 摩擦坡度
        Sf = (n * v / (K * tf.pow(R, 2/3)))**2
    # 方程残差
    res_mass = dh_dt + (A / B) * dv_dx + v * dh_dx
    res_momentum = g * A * (dh_dx + Sf - S0)
    loss_mass = tf.reduce_mean(tf.square(res_mass))
    loss_momentum = tf.reduce_mean(tf.square(res_momentum))
    return loss_mass, loss_momentum

# 边界条件损失
def compute_bc_loss(model, x_bc, t_bc, v_bc, h_bc):
    inputs = tf.concat([x_bc, t_bc], axis=1)
    vh = model(inputs)
    v_hat, h_hat = vh[:, 0:1], vh[:, 1:2]
    # 流速损失
    loss_up_bc = tf.reduce_mean(tf.square(v_hat - v_bc)) if v_bc is not None else 0.0
    # 水位损失
    loss_down_bc = tf.reduce_mean(tf.square(h_hat - h_bc)) if h_bc is not None else 0.0
    return loss_up_bc, loss_down_bc

def train_pinn(model, x_physics, t_physics, x_bc_up, t_bc_up, v_bc_up, x_bc_down, t_bc_down, h_bc_down, epochs, lr, weights):
    optimizer = tf.keras.optimizers.Adam(learning_rate=lr)
    for epoch in range(epochs):
        with tf.GradientTape() as tape:
            # 物理残差
            loss_mass, loss_momentum = compute_physics_loss(model, x_physics, t_physics)
            # 边界条件
            loss_up_bc, loss_down_bc = compute_bc_loss(
                model, x_bc_up, t_bc_up, v_bc_up, x_bc_down, t_bc_down, h_bc_down
            )
            # 总损失
            loss = (weights[0] * loss_up_bc + weights[1] * loss_down_bc +
                    weights[2] * loss_mass + weights[3] * loss_momentum)
        gradients = tape.gradient(loss, model.trainable_variables)
        optimizer.apply_gradients(zip(gradients, model.trainable_variables))
        if epoch % 100 == 0:
            print(f"Epoch {epoch}, Loss: {loss.numpy():.6f}, "
                  f"BC_up: {loss_up_bc.numpy():.6f}, BC_down: {loss_down_bc.numpy():.6f}, "
                  f"Mass: {loss_mass.numpy():.6f}, Momentum: {loss_momentum.numpy():.6f}")

def main():
    L = 79.25  # 渠长
    T = 600.0  # 时间
    N_physics = 1000  # 物理配点数
    N_bc = 100  # 边界点数

    x_physics = tf.random.uniform((N_physics, 1), 0, L)
    t_physics = tf.random.uniform((N_physics, 1), 0, T)

    # 生成边界点
    t_bc = tf.random.uniform((N_bc, 1), 0, T)
    x_bc_up = tf.zeros_like(t_bc)  # 上游 x=0
    x_bc_down = L * tf.ones_like(t_bc)  # 下游 x=L

    # 模拟边界条件
    v_bc_up = tf.sin(2 * np.pi * t_bc / T) * 0.5 + 0.5 
    h_bc_down = tf.sin(2 * np.pi * t_bc / T) * 0.2 + 0.5  

    
    model = PINN()

    stages = [
        # 第一阶
        {"epochs": 5000, "lr": 1e-4, "weights": [1.0, 1.0, 0.1, 0.1]},
        # 第二阶
        {"epochs": 4000, "lr": 1e-5, "weights": [1.0, 1.0, 1.0, 1.0]}
    ]

    for stage in stages:
        print(f"训练阶段:学习率={stage['lr']}, 权重={stage['weights']}")
        train_pinn(
            model, x_physics, t_physics,
            x_bc_up, t_bc, v_bc_up,
            x_bc_down, t_bc, h_bc_down,
            stage["epochs"], stage["lr"], stage["weights"]
        )

    x_test = tf.linspace(0, L, 100)[:, None]
    t_test = tf.ones_like(x_test) * 300.0  # t=300s
    inputs = tf.concat([x_test, t_test], axis=1)
    vh_pred = model(inputs)
    v_pred, h_pred = vh_pred[:, 0], vh_pred[:, 1]

    plt.figure(figsize=(10, 5))
    plt.plot(x_test, v_pred, label="预测流速 (v)")
    plt.plot(x_test, h_pred, label="预测水位 (h)")
    plt.xlabel("x (m)")
    plt.ylabel("值")
    plt.legend()
    plt.savefig("pinn_result.png")
    plt.close()

if __name__ == "__main__":
    main()

结论

本文提出并测试了用于求解SVE的物理信息神经网络。PINN框架能准确预测假设场景和历史洪水场景结果,误差小。可求解基于速度和流量的浅水方程,能对下游赛普拉斯溪案例在大流量下准确预测流量和水位。实验结果表明PINN理论上可获小残差解,还能进行位置和时间外推,与参考数据高度吻合。

不足以及展望

PINN训练时间长,因优化器找最优解难,且本文方法集成数值计算,GPU处理表现差。且PDE在边界和初始条件不确定时有无限解,PINN只能在特定边界条件下求近似解,不同条件需重新训练。后续希望探索优化训练算法或硬件加速方式,减少PINN训练时间,如改进GPU对数值计算的处理能力。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值