18. 行化简的结果显示,矩阵B化简后的简化阶梯型只有三行包含主元位置:
根据1.4的定理4,由于B不是每行都有主元位置,因此B的列向量的线性组合不能表示所有R4中的向量。要注意B的列向量也不能张成R3,因为B的列向量位于R4而不是R3中。
31. 一个3x2的矩阵由三行两列。矩阵A只有两列,因此最多只能有两个主列,即A最多只能有两个主元,无法满足“每一行都有主元”。再根据定理4可得,题中的矩阵方程组Ax=b在b为R3中的任意向量时无法相容。总的来说,如果A是一个mxn且m>n的矩阵,那么A最多能有n个主元,不足以 使所有m行上都有主元,因此如果A是一个mxn且m>n的矩阵,矩阵方程组Ax=b在b为R3中的任意向量时无法相容。
33. 虽然矩阵A的简化阶梯型为时,矩阵方程组不一定有解,但是矩阵方程组有唯一解时矩阵的简化阶梯型一定是该形式。
34. 如果矩阵方程组Ax=b有唯一解,则方程的系数矩阵没有自由变量,即每一列都是主元列,故A的简化阶梯型必然是 ,从而A可以张成R4。
35. 如果从矩阵A中删去超过一列,则删去后的矩阵会少于四列,此时矩阵的主元数也会少于四,从而无法使每一行都包含一个主元,因此这样的矩阵无法张成R4。