线性代数及其应用:第四章 行列式

本文深入探讨线性代数中的行列式,解析其几何意义——n维空间中的体积,并详述行列式的性质,如单位矩阵、交换行变号等。讲解行列式的求解方法,如高斯消去法、大公式和代数余子式展开。最后,阐述行列式在求逆、解决线性方程组和计算体积等方面的应用。
摘要由CSDN通过智能技术生成


前言:这篇blog是《 Linear Algebra and Its Applications》第四章的一些学习笔记

第四章 行列式

  这一章把行列式看成n个行向量的函数,强调行列式的性质。
  行列式在这本书中并不是重点,这本书的重要主线是一步一步引出SVD和求方程组的解(没有解时求近似解),国内的很多线性代数教材在编写时把行列式当重点讲,但其实际作用并没有那么大,这样做可能会把学生给带偏了(我当年就被带偏了)。

1. 行列式的几何意义

  行列式 d e t ( A ) det(A) det(A)的绝对值,其实是n维空间中的盒子的体积,盒子的边由矩阵 A A A的行向量或者列向量构成。其证明在这篇blog的4.3应用章节中。


2. 行列式的性质

2.1. 性质

  1. 单位矩阵的行列式为1;
  2. 任意两行交换,行列式变号;
  3. 行列式对第一行线性依赖;

A = [ α 1 α 2 ⋅ ˙ ˙ ] A=\left[ \begin{matrix} \alpha_{1}\\ \alpha_{2}\\ \dot{\dot{·}} \end{matrix} \right] A=α1α2˙˙,且 α 1 = c 1 β 1 + c 2 β 2 \alpha_{1}=c_{1}\beta_{1}+c_{2}\beta_{2} α1=c1β1+c2β2,则 d e t ( A ) = c 1 d e t ( [ β 1 α 2 … ] ) + c 2 d e t ( [ β 1 α 2 … ] ) det(A)=c_{1}det(\left[ \begin{matrix} \beta_{1}\\ \alpha_{2}\\ \dots \end{matrix} \right])+c_{2}det(\left[ \begin{matrix} \beta_{1}\\ \alpha_{2}\\ \dots \end{matrix} \right]) det(A)=c1det(β1α2)+c2det(β1α2)
推论:由2,3可推出,行列式对任意一行都线性依赖。

由上述性质可以进一步推出下列性质

  1. A A A的两行相等,则 d e t ( A ) = 0 det(A)=0 det(A)=0
  2. 某一行的若干倍加到另一行的操作,不改变行列式的值;

证明:以二阶,第二行乘以 − l -l l加到第一行为例。
∣ a − l c b − l d c d ∣ = ∣ a b c d ∣ − l ∣ c d c d ∣ = ∣ a b c d ∣ − 0 = ∣ a b c d ∣ \left| \begin{matrix} a-lc & b-ld\\ c & d \end{matrix} \right|=\left| \begin{matrix} a & b\\ c & d \end{matrix} \right|-l\left| \begin{matrix} c & d\\ c & d \end{matrix} \right|=\left| \begin{matrix} a & b\\ c & d \end{matrix} \right|-0=\left| \begin{matrix} a & b\\ c & d \end{matrix} \right| alccbldd=acbdlccdd=acbd0=acbd
所以高斯消去操作不改变行列式的值。

  1. A A A有一行全0,则 d e t ( A ) = 0 det(A)=0 det(A)=0

证明:
d e t A = 2 d e t A ⇒ d e t A = 0 detA=2detA \Rightarrow detA=0 detA=2detAdetA=0

  1. 三角方阵的行列式为对角元素乘机;

证明:
∣ a 11 a 11 a 11 0 a 22 a 23 0 0 a 33 ∣ \left| \begin{matrix} a_{11} & a_{11} & a_{11}\\ 0 & a_{22} & a_{23}\\ 0 & 0 & a_{33} \end{matrix} \right| a1100a11a220a11a23a33
经高斯消去法得到
∣ a 11 0 0 0 a 22 0 0 0 a 33 ∣ = a 11 a 22 a 33 \left| \begin{matrix} a_{11} & 0 & 0\\ 0 & a_{22} & 0\\ 0 & 0 & a_{33} \end{matrix} \right|=a_{11}a_{22}a_{33} a11000a22000a33=a11a22a33

  1. A n × n A_{n\times n} An×n是奇异矩阵( p i v o t s &lt; n pivots&lt;n pivots<n),则 d e t ( A ) = 0 det(A)=0 det(A)=0 A n × n A_{n\times n} An×n是非奇异矩阵( p i v o t s pivots pivots = n =n =n),则 d e t ( A ) ≠ 0 det(A)\neq 0 det(A)̸=0

高斯消去法可证

  1. d e t ( A B ) = d e t ( A ) d e t ( B ) det(AB)=det(A)det(B) det(AB)=det(A)det(B)

有待证明,不过这个性质挺重要的,可以推出当 A n × n A_{n\times n} An×n有n个pivots时,
d e t ( A − 1 ) = 1 d e t ( A ) det(A^{-1})=\frac{1}{det(A)} det(A1)=det(A)1

  1. d e t ( A T ) = d e t ( A ) det(A^{T})=det(A) det(AT)=det(A)

证明:
根据矩阵的三角分解, d e t ( P A ) = d e t ( L D U ) det(PA)=det(LDU) det(PA)=det(LDU) d e t ( A T P T ) = d e t ( U T D L T ) det(A^{T}P^{T})=det(U^{T}DL^{T}) det(ATPT)=det(UTDLT)
d e t ( P A ) = d e t ( L D U ) = d e t ( L ) d e t ( D ) d e t ( U ) = d e t ( L T ) d e t ( D ) d e t ( U T ) det(PA)=det(LDU)=det(L)det(D)det(U)=det(L^{T})det(D)det(U^{T}) det(PA)=det(LDU)=det(L)det(D)det(U)=det(LT)det(D)det(UT),第三个等式用的性质7
所以 d e t ( L T ) d e t ( D ) d e t ( U T ) = d e t ( U T ) d e t ( D ) d e t ( L T ) = d e t ( U T D L T ) = d e t ( A T P T ) det(L^{T})det(D)det(U^{T})=det(U^{T})det(D)det(L^{T})=det(U^{T}DL^{T})=det(A^{T}P^{T}) det(LT)det(D)det(UT)=det(UT)det(D)det(LT)=det(UTDLT)=det(ATPT)
所以 d e t ( P A ) = d e t ( A T P T ) = d e t ( P ) d e t ( A ) = d e t ( A T ) d e t ( P T ) det(PA)=det(A^{T}P^{T})=det(P)det(A)=det(A^{T})det(P^{T}) det(PA)=det(ATPT)=det(P)det(A)=det(AT)det(PT)
d e t ( P ) = ± 1 det(P)=\pm 1 det(P)=±1 d e t ( P P T ) = d e t I = 1 = d e t ( P ) d e t ( P T ) det(PP^{T})=detI=1=det(P)det(P^{T}) det(PPT)=detI=1=det(P)det(PT)
所以 d e t ( P ) = d e t ( P T ) = 1 det(P)=det(P^{T})=1 det(P)=det(PT)=1 − 1 -1 1
所以 d e t ( A T ) = d e t ( A ) det(A^{T})=det(A) det(AT)=det(A)

2.1. Binet-Cauchy公式

https://baike.baidu.com/item/Binet-Cauchy定理/8255247?fr=aladdin


3. 行列式的求解

3.1. 利用高斯消去法

  这也是最常用的方法,对方阵进行高斯消去,得到三角矩阵,在利用性质7即可。即 d e t ( A ) = ± p i v o t s det(A)=\pm pivots det(A)=±pivots乘积,

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值