go-channel使用(3)

通过反射的方式执行 select 语句,在处理很多的 case clause,尤其是不定长的 case clause 的时候,非常有用。而且,在后面介绍任务编排的实现时,我也会采用这种方法,所以,我先带你具体学习下 Channel 的反射用法。

使用反射操作 Channel

select可以处理chan的send和recv,它们都可以作为case clause。
当用select处理不定长case clause时,可以使用reflect.SelectCase方法

func main() {
	ch1 := make(chan int, 10)
	ch2 := make(chan int, 20)

	cases := createCases(ch1, ch2)

	for i := 0; i < 10; i++ {
		chosen, recv, ok := reflect.Select(cases)
			if recv.IsValid() { // recv case
				if ok {
					fmt.Printf("recv data case from index[%v], Value: %v, ok: %v\n", chosen, recv, ok)
				}else{
					fmt.Printf("recv close case from index[%v], Value: %v, ok: %v\n", chosen, recv, ok)
					// 已close的chan的receive和send都移除
				}
			}else {				// send case
				//fmt.Println("send:", chosen, recv, ok)
				fmt.Printf("send case from index[%v], Value: %v, ok: %v\n", chosen, recv, ok)
			}
	}
	fmt.Printf("main end\n")
}

典型应用场景

消息交流

从 chan 的内部实现看,它是以一个循环队列的方式存放数据,所以,它有时候也会被当成线程安全的队列和 buffer 使用。一个 goroutine 可以安全地往 Channel 中塞数据,另外一个 goroutine 可以安全地从 Channel 中读取数据,goroutine 就可以安全地实现信息交流了。
(即把chan当作一个消息池,消息或数据都存放在chan中?
那么容量是否有要求呢?

数据传递

比如之前讲的按顺序打印值,这类场景都有一个特点,就是当前持有数据的 goroutine 都有一个信箱,信箱使用 chan 实现,goroutine 只需要关注自己的信箱中的数据,处理完毕后,就把结果发送到下一家的信箱中。

信号通知

chan类型有这个特点:如果为空,那么receive接收数据时就会阻塞等待,直到chan被关闭或有新数据到来。利用此机制,可以实现wait/notify设计模式。

传统的cond并发原语也能实现此功能,但使用比较复杂,容易出错,而使用 chan 实现 wait/notify 模式,就方便多了。

除了正常的业务处理时的 wait/notify,我们经常碰到的一个场景,就是程序关闭的时候,我们需要在退出之前做一些清理(doCleanup 方法)的动作。这个时候,我们经常要使用 chan。


func main() {
    var closing = make(chan struct{})
    var closed = make(chan struct{})

    go func() {
        // 模拟业务处理
        for {
            select {
            case <-closing:
                return
            default:
                // ....... 业务计算
                time.Sleep(100 * time.Millisecond)
            }
        }
    }()

    // 处理CTRL+C等中断信号
    termChan := make(chan os.Signal)
    signal.Notify(termChan, syscall.SIGINT, syscall.SIGTERM)
    <-termChan

    close(closing)
    // 执行退出之前的清理动作
    go doCleanup(closed)

    select {
    case <-closed:
    case <-time.After(time.Second):
        fmt.Println("清理超时,不等了")
    }
    fmt.Println("优雅退出")
}

func doCleanup(closed chan struct{}) {
    time.Sleep((time.Minute))
    close(closed)
}

closing,代表程序退出,但是清理工作还没做;
closed,代表清理工作已经做完。

使用 chan 也可以实现互斥锁。

在 chan 的内部实现中,就有一把互斥锁保护着它的所有字段。从外在表现上,chan 的发送和接收之间也存在着 happens-before 的关系,保证元素放进去之后,receiver 才能读取到(关于 happends-before 的关系,是指事件发生的先后顺序关系,我会在下一讲详细介绍,这里你只需要知道它是一种描述事件先后顺序的方法)。

要想使用 chan 实现互斥锁,至少有两种方式。一种方式是先初始化一个 capacity 等于 1 的 Channel,然后再放入一个元素。这个元素就代表锁,谁取得了这个元素,就相当于获取了这把锁。另一种方式是,先初始化一个 capacity 等于 1 的 Channel,它的“空槽”代表锁,谁能成功地把元素发送到这个 Channel,谁就获取了这把锁。

package mychanmutex

import "time"

type Mutex struct {
	ch chan struct{}
}

// NewMutex 初始化时放入一个值
func NewMutex() *Mutex {
	mu := &Mutex{ch: make(chan struct{}, 1)}
	mu.ch <- struct{}{}
	return mu
}


func (m *Mutex) Lock() {
	<- m.ch
}

func (m *Mutex) Unlock() {
	select {
		case m.ch <- struct{}{}:
	default:
		panic("unlock of unlocked mutex")
	}
}

func (m *Mutex) TryLock() bool {
	select {
		case <- m.ch:
			return true
		default:
	}
	return false
}

func (m *Mutex) LockTimeout(timeout time.Duration) bool {
	select {
		case <- m.ch:
			return true
		case <- time.After(timeout):
			return false
	}
}

func (m *Mutex) IsLocked() bool {
	return len(m.ch) == 0
}

任务编排

前面所说的消息交流的场景是一个特殊的任务编排的场景,这个“击鼓传花”的模式也被称为流水线模式。

在第 6 讲,我们学习了 WaitGroup,我们可以利用它实现等待模式:启动一组 goroutine 执行任务,然后等待这些任务都完成。其实,我们也可以使用 chan 实现 WaitGroup 的功能。这个比较简单,我就不举例子了,接下来我介绍几种更复杂的编排模式。

这里的编排既指安排 goroutine 按照指定的顺序执行,也指多个 chan 按照指定的方式组合处理的方式。goroutine 的编排类似“击鼓传花”的例子,我们通过编排数据在 chan 之间的流转,就可以控制 goroutine 的执行。接下来,我来重点介绍下多个 chan 的编排方式,总共 5 种,分别是 Or-Done 模式、扇入模式、扇出模式、Stream 和 map-reduce。

Or-Done 模式

首先来看 Or-Done 模式。Or-Done 模式是信号通知模式中更宽泛的一种模式。这里提到了“信号通知模式”,我先来解释一下。

我们会使用“信号通知”实现某个任务执行完成后的通知机制,在实现时,我们为这个任务定义一个类型为 chan struct{}类型的 done 变量,等任务结束后,我们就可以 close 这个变量,然后,其它 receiver 就会收到这个通知。

这是有一个任务的情况,如果有多个任务,只要有任意一个任务执行完,我们就想获得这个信号,这就是 Or-Done 模式。

比如,你发送同一个请求到多个微服务节点,只要任意一个微服务节点返回结果,就算成功,这个时候,就可以参考下面的实现:


func or(channels ...<-chan interface{}) <-chan interface{} {
    //特殊情况,只有0个或者1个
    switch len(channels) {
    case 0:
        return nil
    case 1:
        return channels[0]
    }

    orDone := make(chan interface{})
    go func() {
        defer close(orDone)
        // 利用反射构建SelectCase
        var cases []reflect.SelectCase
        for _, c := range channels {
            cases = append(cases, reflect.SelectCase{
                Dir:  reflect.SelectRecv,
                Chan: reflect.ValueOf(c),
            })
        }

        // 随机选择一个可用的case
        reflect.Select(cases)
    }()


    return orDone
}

这里reflect.Select只要其中有chan可读,则会返回,然后close(orDone).

扇入模式

扇入借鉴了数字电路的概念,它定义了单个逻辑门能够接受的数字信号输入最大量的术语。一个逻辑门可以有多个输入,一个输出。

在软件工程中,模块的扇入是指有多少个上级模块调用它。而对于我们这里的 Channel 扇入模式来说,就是指有多个源 Channel 输入、一个目的 Channel 输出的情况。扇入比就是源 Channel 数量比 1。

每个源 Channel 的元素都会发送给目标 Channel,相当于目标 Channel 的 receiver 只需要监听目标 Channel,就可以接收所有发送给源 Channel 的数据。

扇入模式也可以使用反射、递归,或者是用最笨的每个 goroutine 处理一个 Channel 的方式来实现。

把每个input channel里数据读出,写如到output channel中:


func fanInReflect(chans ...<-chan interface{}) <-chan interface{} {
    out := make(chan interface{})
    go func() {
        defer close(out)
        // 构造SelectCase slice
        var cases []reflect.SelectCase
        for _, c := range chans {
            cases = append(cases, reflect.SelectCase{
                Dir:  reflect.SelectRecv,
                Chan: reflect.ValueOf(c),
            })
        }
        
        // 循环,从cases中选择一个可用的
        for len(cases) > 0 {
            i, v, ok := reflect.Select(cases)
            if !ok { // 此channel已经close
                cases = append(cases[:i], cases[i+1:]...)
                continue
            }
            out <- v.Interface()
        }
    }()
    return out
}

扇出模式

有扇入模式,就有扇出模式,扇出模式是和扇入模式相反的。

扇出模式只有一个输入源 Channel,有多个目标 Channel,扇出比就是 1 比目标 Channel 数的值,经常用在设计模式中的观察者模式中(观察者设计模式定义了对象间的一种一对多的组合关系。这样一来,一个对象的状态发生变化时,所有依赖于它的对象都会得到通知并自动刷新)。在观察者模式中,数据变动后,多个观察者都会收到这个变更信号。


func fanOut(ch <-chan interface{}, out []chan interface{}, async bool) {
    go func() {
        defer func() { //退出时关闭所有的输出chan
            for i := 0; i < len(out); i++ {
                close(out[i])
            }
        }()

        for v := range ch { // 从输入chan中读取数据
            v := v
            for i := 0; i < len(out); i++ {
                i := i
                if async { //异步
                    go func() {
                        out[i] <- v // 放入到输出chan中,异步方式
                    }()
                } else {
                    out[i] <- v // 放入到输出chan中,同步方式
                }
            }
        }
    }()
}

Stream

这里我来介绍一种把 Channel 当作流式管道使用的方式,也就是把 Channel 看作流(Stream),提供跳过几个元素,或者是只取其中的几个元素等方法。

func asStream(done <-chan struct{}, values ...interface{}) <-chan interface{} {
    s := make(chan interface{}) //创建一个unbuffered的channel
    go func() { // 启动一个goroutine,往s中塞数据
        defer close(s) // 退出时关闭chan
        for _, v := range values { // 遍历数组
            select {
            case <-done:
                return
            case s <- v: // 将数组元素塞入到chan中
            }
        }
    }()
    return s
}

流创建好(创建完需要close)以后,该咋处理呢?下面我再给你介绍下实现流的方法。
takeN:只取流中的前 n 个数据;
takeFn:筛选流中的数据,只保留满足条件的数据;
takeWhile:只取前面满足条件的数据,一旦不满足条件,就不再取;
skipN:跳过流中前几个数据;
skipFn:跳过满足条件的数据;
skipWhile:跳过前面满足条件的数据,一旦不满足条件,当前这个元素和以后的元素都会输出给 Channel 的 receiver。
这些方法的实现很类似,我们以 takeN 为例来具体解释一下。

func takeN(done <-chan struct{}, valueStream <-chan interface{}, num int) <-chan interface{} {
    takeStream := make(chan interface{}) // 创建输出流
    go func() {
        defer close(takeStream)
        for i := 0; i < num; i++ { // 只读取前num个元素
            select {
            case <-done:
                return
            case takeStream <- <-valueStream: //从输入流中读取元素
            }
        }
    }()
    return takeStream
}

map-reduce

map-reduce 分为两个步骤,第一步是映射(map),处理队列中的数据,第二步是规约(reduce),把列表中的每一个元素按照一定的处理方式处理成结果,放入到结果队列中。

func mapChan(in <-chan interface{}, fn func(interface{}) interface{}) <-chan interface{} {
    out := make(chan interface{}) //创建一个输出chan
    if in == nil { // 异常检查
        close(out)
        return out
    }

    go func() { // 启动一个goroutine,实现map的主要逻辑
        defer close(out)
        for v := range in { // 从输入chan读取数据,执行业务操作,也就是map操作
            out <- fn(v)
        }
    }()

    return out
}

func reduce(in <-chan interface{}, fn func(r, v interface{}) interface{}) interface{} {
    if in == nil { // 异常检查
        return nil
    }

    out := <-in // 先读取第一个元素
    for v := range in { // 实现reduce的主要逻辑
        out = fn(out, v)
    }

    return out
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值