逻辑回归与二元分类——含python代码

本文详细阐述了逻辑回归的基本原理,包括预测函数的推导、目标函数的形式以及梯度下降法的应用,并通过Python代码实现了逻辑回归模型。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

  逻辑回归和线性回归的最终目标都是拟合一个线性函数 y=θTx y = θ T x ,使得我们的预测输出和真实输出之间的差异最小。它们的区别在于损失函数不一样,线性回归的损失函数( MSE M S E )是基于模型误差服从正态分布的假设推导出来的,而逻辑回归的损失函数则是基于极大似然的假设推导出来的,即所有样本结果的后验概率乘积最大。

预测函数

  因为我们利用超平面 θTx=0 θ T x = 0 来分类,所以当一个样本落在超平面上,我们就可以认为该样本为正样本的概率等于负样本的概率,即:

P(y=1|x)P(y=1|x)=1 P ( y = 1 | x ) P ( y = − 1 | x ) = 1

对上式两边取对数:
lnP(y=1|x)P(y=1|x)=0=θTx l n P ( y = 1 | x ) P ( y = − 1 | x ) = 0 = θ T x

因为 P(y=1|x)+P(y=1|x)=1 P ( y = 1 | x ) + P ( y = − 1 | x ) = 1 ,所以可以得到:
lnP(y=1|x)1P(y=1|x)=0=θTx l n P ( y = 1 | x ) 1 − P ( y = 1 | x ) = 0 = θ T x

整理可得:
P(y=1|x)=eθTx1+eθTx P ( y = 1 | x ) = e θ T x 1 + e θ T x

所以 P(y=1|x)=1P(y=1|x)=11+eθTx P ( y = − 1 | x ) = 1 − P ( y = 1 | x ) = 1 1 + e θ T x P(y=1|x) P ( y = 1 | x ) 的分子分母同时除以 eθTx e θ T x 得到 11+eθTx 1 1 + e − θ T x ,这就是 sigmoid s i g m o i d 函数的推导过程。其函数曲线如下图所示:

sigmoid函数曲线

我们可以将其理解为一种非线性变换,目的是把 (,+) ( − ∞ , + ∞ ) 的数值映射到0到1之间,我们将映射结果视为 y=1 y = 1 概率。 sigmoid s i g m o i d 函数有一个重要的性质:
f(z)=f(z)(1f(z)) f ′ ( z ) = f ( z ) ( 1 − f ( z ) )

该性质在后面求偏导数的时候会用到。

目标函数

  我们令 h(x)=11+eθTx h ( x ) = 1 1 + e − θ T x ,由前面的推导可以将 h(x) h ( x ) 理解为样本点 x x 为正样本的概率P(y=1|x),即 P(y=1|x)=h(x) P ( y = 1 | x ) = h ( x ) 。根据极大似然估计的思想,各个样本的结果出现总概率(即后验概率乘积)需要达到最大值,即:

max{i=1NP(yi=ki|xi)}(ki=1,1) m a x { ∏ i = 1 N P ( y i = k i | x i ) } ( k i = − 1 , 1 )

因为 1h(x)=h(x) 1 − h ( x ) = h ( x ) ,所以上式取对数后可以得到:
max{i=1NlnP(yi=ki|xi)}===max{i=1Nln(h(yixi))}max{i=1Nln(11+eyiθTx)}min{i=1Nln(1+eyiθTx)}(1)(2)(3) (1) m a x { ∑ i = 1 N l n P ( y i = k i | x i ) } = m a x { ∑ i = 1 N l n ( h ( y i x i ) ) } (2) = m a x { ∑ i = 1 N l n ( 1 1 + e − y i θ T x ) } (3) = m i n { ∑ i = 1 N l n ( 1 + e − y i θ T x ) }

这便是逻辑回归的优化目标函数,它的最终形式表示为:
J=1Ni=1Nln(1+eyiθTx) J = 1 N ∑ i = 1 N l n ( 1 + e − y i θ T x )

在吴恩达的机器学习课程中,逻辑回归的目标函数形式为:
J=1Ni=1N{yiln(h(xi))(1yi)ln(1h(xi))} J = 1 N ∑ i = 1 N { − y i l n ( h ( x i ) ) − ( 1 − y i ) l n ( 1 − h ( x i ) ) }

是因为它将负样本 yi y i 表示为0,它和我们推导出来的结果本质是相同的。

梯度下降

  我们推导过程中有一步为: max{Ni=1ln(h(yixi))} m a x { ∑ i = 1 N l n ( h ( y i x i ) ) } ,为了方便利用 sigmoid s i g m o i d 函 数 的 求 导 性 质 ,我们便把这个式子作为优化目标。要求一个凸函数的最大值,更新公式为:

θ=θ+θJ θ = θ + ∂ ∂ θ J

g(θTx)=h(x)=11+eθTx g ( θ T x ) = h ( x ) = 1 1 + e − θ T x ,优化目标可以变换为: J(θ)=max{Ni=1ln(g(yiθTxi))} J ( θ ) = m a x { ∑ i = 1 N l n ( g ( y i θ T x i ) ) } ,对我们的优化目标进行求导:
θJ===i=1N1g(yiθTxi)θg(yiθTxi)i=1N1g(yiθTxi)g(yiθTxi)(1g(yiθTxi))θ(yiθTxi)i=1N(1g(yiθTxi))yixi(4)(5)(6) (4) ∂ ∂ θ J = ∑ i = 1 N 1 g ( y i θ T x i ) ⋅ ∂ ∂ θ g ( y i θ T x i ) (5) = ∑ i = 1 N 1 g ( y i θ T x i ) ⋅ g ( y i θ T x i ) ( 1 − g ( y i θ T x i ) ) ⋅ ∂ ∂ θ ( y i θ T x i ) (6) = ∑ i = 1 N ( 1 − g ( y i θ T x i ) ) ⋅ y i x i

所以梯度下降的更新方程为:
θ=θ+αNi=1N(1g(yiθTxi))yixi θ = θ + α N ∑ i = 1 N ( 1 − g ( y i θ T x i ) ) ⋅ y i x i

代码块

自己用python撸了个逻辑回归,有问题请留言评论区:

import numpy as np
from sklearn.datasets import load_breast_cancer
from sklearn.preprocessing import scale
from random import random
from numpy import random as nr
from sklearn.model_selection import train_test_split

def sigmoid(x):
    return 1/(1+np.exp(-x))

def RandSam(train_data, train_target, sample_num):#随机采样传入训练函数进行迭代
    data_num = train_data.shape[0]
    if sample_num > data_num:
        return -1
    else:
        data = []
        target = []
        for i in range(sample_num):
            tmp = nr.randint(0,data_num)
            data.append(train_data[tmp])
            target.append(train_target[tmp])
    return np.array(data),np.array(target)

class LogisticClassifier(object):
    alpha = 0.01
    circle = 1000
    l2 = 0.01
    weight = np.array([])
    def __init__(self, learning_rate, circle_num, L2):
        self.alpha = learning_rate
        self.circle = circle_num
        self.l2 = L2
    def fit(self, train_data, train_target):
        data_num = train_data.shape[0]
        feature_size = train_data.shape[1]
        ones = np.ones((data_num,1))
        train_data = np.hstack((train_data,ones))
        #Y = train_target
        self.weight = np.round(np.random.normal(0,1,feature_size+1),2)
        for i in range(self.circle):
            delta = np.zeros((feature_size+1,))
            X,Y = RandSam(train_data, train_target, 50)
            for j in range(50):
                delta += (1-sigmoid(Y[j]*np.dot(X[j],self.weight)))* \
                          Y[j]*X[j]
            self.weight += self.alpha*delta-self.l2*self.weight

    def predict(self, test_data):
        data_num = test_data.shape[0]
        ones = np.ones((data_num,1))
        X = np.hstack((test_data,ones))
        return sigmoid(np.dot(X,self.weight))

    def evaluate(self, predict_target, test_target):
        predict_target[predict_target>=0.5] = 1
        predict_target[predict_target<0.5] = -1
        return sum(predict_target==test_target)/len(predict_target)

if __name__ == "__main__":
    cancer = load_breast_cancer()
    xtr, xval, ytr, yval = train_test_split(cancer.data, cancer.target, \
    test_size=0.2, random_state=7)
    logistics = LogisticClassifier(0.01,2000, 0.01)
    logistics.fit(xtr, ytr)
    predict = logistics.predict(xval)
    print('the accuracy is ',logistics.evaluate(predict, yval),'.')
本案例将使用逻辑回归模型来预测居民的出行方式选择行为。数据集包居民的个人和家庭信息以及出行方式的选择情况。我们将使用Python语言进行分析和建模。 首先,加载需要用到的库和数据集: ```python import pandas as pd import numpy as np import matplotlib.pyplot as plt %matplotlib inline data = pd.read_csv('modechoice.csv') ``` 接下来,我们对数据集进行探索和预处理: ```python # 查看数据集的前5行 data.head() # 将数据集分为自变量和因变量 X = data.iloc[:, :-1] y = data.iloc[:, -1] # 将分类变量转换为数值型变量 X = pd.get_dummies(X, columns=['Gender', 'Education', 'Income', 'Car', 'Bike']) # 将因变量转换为0和1的二元变量 y = np.where(y=='Car', 1, 0) # 将数据集分为训练集和测试集 from sklearn.model_selection import train_test_split X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42) ``` 然后,我们使用逻辑回归算法进行建模: ```python from sklearn.linear_model import LogisticRegression model = LogisticRegression() model.fit(X_train, y_train) ``` 接下来,我们评估模型的性能: ```python # 预测测试集的结果 y_pred = model.predict(X_test) # 计算模型的准确率 from sklearn.metrics import accuracy_score accuracy_score(y_test, y_pred) ``` 最后,我们可以使用模型来进行预测: ```python # 创建一个新的数据集 new_data = pd.DataFrame({ 'Gender_Female': [1], 'Gender_Male': [0], 'Education_Graduate': [0], 'Education_High School': [1], 'Education_Others': [0], 'Income_High': [1], 'Income_Low': [0], 'Income_Medium': [0], 'Car_No': [1], 'Car_Yes': [0], 'Bike_No': [0], 'Bike_Yes': [1] }) # 预测新数据的结果 model.predict(new_data) ``` 本案例中使用的数据集是一个虚构的例子,实际应用中需要根据具体的场景选择合适的数据集和特征工程方法。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值