Logistic回归——二分类 —— matlab

目录

1.简介

2.应用范围

3.分类

3.应用条件

4.原理详解

4.1 sigmod分类函数

4.2 建立目标函数

4.3 求解相关参数

5.实列分析

5.1 读取数据(excel文件)

5.2 分离数据集

5.3 求解前设定

5.4 求解目标函数

5.5 预测

5.6 预测分类

5.7 准确率

6.matlab自带函数


1.简介

Logistic回归又称logistic回归分析,是一种广义的线性回归分析模型,常用于数据挖掘 ,Logistic回归虽说是回归,但实际更属于判别分析。

2.应用范围

① 适用于流行病学资料的危险因素分析

② 实验室中药物的剂量-反应关系

③ 临床试验评价

④ 疾病的预后因素分析

3.分类

①按因变量的资料类型分:

二分类

多分类

其中二分较为常用

② 按研究方法分:

条 件Logistic回归

非条件Logistic回归

两者针对的资料类型不一样,前者针对配对研究,后者针对成组研究。

3.应用条件

① 独立性。各观测对象间是相互独立的;

② LogitP与自变量是线性关系;

③ 样本量。经验值是病例对照各50例以上或为自变量的5-10倍(以10倍为宜),不过随着统计技术和软件的发展,样本量较小或不能进行似然估计的情况下可采用精确logistic回归分析,此时要求分析变量不能太多,且变量分类不能太多;

④ 当队列资料进行logistic回归分析时,观察时间应该相同,否则需考虑观察时间的影响(建议用Poisson回归)。

4.原理详解

4.1 sigmod分类函数

之所以在这里介绍,是因为下面会用到这个函数

Sigmoid函数

\large h_{w}=\frac{1}{1+e^{-z}}

曲线表示:

由图可见当范围为0-1,当X<0时,Y趋向于0,X>0时,Y趋向于1,适合用于0-1二分类。

所以我们就可以设分类函数如下:

\large h_{w}=\frac{1}{1+e^{-z}}

\large z=\omega ^{T}x

\large x=\begin{bmatrix} 1,x_{1},x_{2},...,x_{n}\end{bmatrix}

\large z=w_{0}+w_{1}x_{1}+...+w_{n}x_{n}

        其中x为自变量,即特征数据。实际因变量为y,为0-1变量,h_w为预测值范围为0-1。显然这个模型需要求解的变量为w

4.2 建立目标函数

对于输入变量x,设h_w(x)为输出为1的概率,则1-h_w(x)为输出0的概率。则可表示成如下:

\large p(y=1|x;w)=h_{w}(x)

\large p(y=0|x;w)=1-h_{w}(x)

求解损失函数:用概率论中的极大似然估计的方法,构建概率函数如下,

评论 5
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值