python下利用逻辑回归实现数据的二分类

0.前言

逻辑回归的核心思想就是最大似然估计,最大似然估计指的就是在已知每个已经发生的条件下,来估算产生该事件发生的概率。
根据梯度下降策略寻找最优参数theta,使得似然估计最大。本例子是在唐宇迪python数据分析课程基础上写的。一共分为6大步骤,分别为读取数据,sigmoid函数,hΘ(x)(概率映射函数),似然函数,梯度下降,停止策略。

1.读取数据

读取数据很简单,直接利用numpy,pandas,matplot 这里是百度云盘提取码,文件在唐宇迪-机器学习课程资料\机器学习算法配套案例实战机器学习下,链接:https://pan.baidu.com/s/1Vw31szPRj6ZSvKyumnuc1g
提取码:4xm8
复制这段内容后打开百度网盘手机App,操作更方便哦

#1.读取数据
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
#读取数据
pdData=pd.read_csv('LogiReg_data.txt',header=None,names=['Exam 1','Exam 2','Admitted'])
#将数据分为X,y
pdData.insert(0,'Ones',1)
orig_data=pdData.values
cols=orig_data.shape[1]
X=orig_data[:,0:cols-1]
y=orig_data[:,cols-1:cols]
# print(X)

positive=pdData[pdData['Admitted']==1]
negative=pdData[pdData['Admitted']==0]

2.sigmoid函数在这里插入图片描述
sigmoid为如上图所示的函数,将无限大小的数据映射在0,1之间。`

#2.创建sigmoid函数
def sigmoid(z):
    return 1/(1+np.exp(-z))

~~

3.hΘ(x)函数

~~
在这里插入图片描述
就是将X中的数据通过theta参数后变换为0,1中的一个概率值,目标就是求theta使得似然估计最大。

#3.创建hΘ(x)函数
def model(X,threta):
    sig=sigmoid(np.dot(X,threta.T))
    return sig

4.似然函数

在课程中叫做损失值,但是我感觉叫似然函数更加合适。

#4.求最大似然函数,即为最大似然函数的log形式
def cost(X,y,theta):
    #model即为概率映射函数
    temp=model(X,theta)
    left=np.multiply(y,np.log(temp))
    right=np.multiply(1-y,np.log(temp))
    return -(np.sum(left-right))/len(y)

5.梯度下降

梯度下降是整个算法中的核心思想,牵涉到较多的数学计算,很重要。
在这里插入图片描述
在这里插入图片描述

#5.定义梯度下降函数,实现梯度下降
def gradient(X,y,theta):
    grad=np.zeros(theta.shape)
    error=(model(X,theta)-y).ravel()
    leng=len(threta[0])
    for i in range(leng):
        temp=np.multiply(error,X[:,i])
        grad[0,i]=sum(temp)/len(X)
    return grad

6.停止策略

#6.设定不同的停止策略
#迭代次数,损失值,梯度
STOP_ITER = 0
STOP_COST = 1
STOP_GRAD = 2

def stopCriterion(type,value,threshold):
    if type==0: return value>threshold
    elif type==1: return abs(value[-1]-value[-2])<threshold
    elif type==2: return np.linalg.norm(value)<threshold

#洗牌
def shuffleData(data):
    np.random.shuffle(data)
    cols=data.shape[1]
    X=data[:,0:cols-1]
    y=data[:,cols-1:]
    return X,y

全部程序代码

#1.读取数据=>2.创建sigmoid映射函数=>3.hΘ(x)函数=>4.最大似然函数=>5.梯度下降=>6.停止策略

#1.读取数据
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
#读取数据
pdData=pd.read_csv('LogiReg_data.txt',header=None,names=['Exam 1','Exam 2','Admitted'])
#将数据分为X,y
pdData.insert(0,'Ones',1)
orig_data=pdData.values
cols=orig_data.shape[1]
X=orig_data[:,0:cols-1]
y=orig_data[:,cols-1:cols]
# print(X)

positive=pdData[pdData['Admitted']==1]
negative=pdData[pdData['Admitted']==0]

#2.创建sigmoid函数
def sigmoid(z):
    return 1/(1+np.exp(-z))

#3.创建hΘ(x)函数
def model(X,threta):
    sig=sigmoid(np.dot(X,threta.T))
    return sig

#4.求最大似然函数,即为最大似然函数的log形式
def cost(X,y,theta):
    #model即为概率映射函数
    temp=model(X,theta)
    left=np.multiply(y,np.log(temp))
    right=np.multiply(1-y,np.log(temp))
    return -(np.sum(left-right))/len(y)

#5.定义梯度下降函数,实现梯度下降
def gradient(X,y,theta):
    grad=np.zeros(theta.shape)
    error=(model(X,theta)-y).ravel()
    leng=len(threta[0])
    for i in range(leng):
        temp=np.multiply(error,X[:,i])
        grad[0,i]=sum(temp)/len(X)
    return grad

#6.设定不同的停止策略
#迭代次数,损失值,梯度
STOP_ITER = 0
STOP_COST = 1
STOP_GRAD = 2

def stopCriterion(type,value,threshold):
    if type==0: return value>threshold
    elif type==1: return abs(value[-1]-value[-2])<threshold
    elif type==2: return np.linalg.norm(value)<threshold

#洗牌
def shuffleData(data):
    np.random.shuffle(data)
    cols=data.shape[1]
    X=data[:,0:cols-1]
    y=data[:,cols-1:]
    return X,y

import time
def descent(data,threta,batchSize,stopType,thresh,alpha):
    init_time=time.time()
    i=0
    k=0
    X,y=shuffleData(data)
    grad=np.zeros(threta.shape)
    costs=[cost(X,y,threta)]
    n=len(data)
    while True:
        grad=gradient(X[k:k+batchSize],y[k:k+batchSize],threta)
        k=batchSize+k
        if(k>=n):
            k=0
            X,y=shuffleData(data)
        threta=threta-alpha*grad
        costs.append(cost(X,y,threta))
        i=i+1

        if stopType == STOP_ITER:
            value = i
        elif stopType == STOP_COST:
            value = costs
        elif stopType == STOP_GRAD:
            value = grad
        if stopCriterion(stopType, value, thresh): break

    return threta,i-1,costs,grad,time.time()-init_time

def runExpe(data, theta, batchSize, stopType, thresh, alpha):
    #import pdb; pdb.set_trace();
    theta, iter, costs, grad, dur = descent(data, theta, batchSize, stopType, thresh, alpha)
    name = "Original" if (data[:,1]>2).sum() > 1 else "Scaled"
    name += " data - learning rate: {} - ".format(alpha)
    if batchSize==len(data): strDescType = "Gradient"
    elif batchSize==1:  strDescType = "Stochastic"
    else: strDescType = "Mini-batch ({})".format(batchSize)
    name += strDescType + " descent - Stop: "
    if stopType == STOP_ITER: strStop = "{} iterations".format(thresh)
    elif stopType == STOP_COST: strStop = "costs change < {}".format(thresh)
    else: strStop = "gradient norm < {}".format(thresh)
    name += strStop
    print ("***{}\nTheta: {} - Iter: {} - Last cost: {:03.2f} - Duration: {:03.2f}s".format(
        name, theta, iter, costs[-1], dur))
    fig, ax = plt.subplots(figsize=(12,4))
    ax.plot(np.arange(len(costs)), costs, 'g')
    ax.set_xlabel('Iterations')
    ax.set_ylabel('Cost')
    ax.set_title(name.upper() + ' - Error vs. Iteration')
    return theta

threta=np.zeros([1,3])
runExpe(orig_data,threta,batchSize=60,stopType=STOP_ITER,thresh=10000,alpha=0.000001)
plt.show()

结果如下图所示
在这里插入图片描述

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值