一、复数
1、复数的表现形式
(1)代数形式:(在电路中通常用j来代替i,a为实部,b为虚部)
(2)三角函数形式:
(3)在复平面上表示:
(4)指数形式:
(5)极坐标形式:(|F|为矢径,∠φ为极角)
极坐标与直角坐标的关系:
2、复数的四则运算
(1)加减运算:
(2)乘法运算:
(3)除法运算:
3、旋转因子
(1)对于复数,
相当于把
逆时针旋转一个角度
,而模不变。故把
称为旋转因子。
(2)几种不同值时的旋转因子:
二、正弦电压和电流
1、正弦量
(1)交流电原理:当线圈在磁场中旋转时,对应不同位置,线圈切割磁力线数不同,所产生的感应电压按正弦规律产生变化,线圈旋转一周,对应的角度变化为2π。
(2)随时间按正弦规律变化的电流或电压等变量称为正弦量。
(3)瞬时值表达式:
(4)波形图:
(5)正弦量为周期函数,可表示为,其中K为正整数,T为周期。
①重复变化一次所需的时间称为周期,单位为s(秒)。
②每秒重复变化的次数称为频率,单位为Hz(赫兹)。
③频率和周期互为倒数。
(6)正弦交流电路:激励和响应均为正弦量的电路(正弦稳态电路)称为正弦交流电路,简称正弦电路或交流电路。
(7)研究正弦电路的意义:
①正弦稳态电路在电力系统和电子技术领域占有十分重要的地位,它容易产生、传送和使用。
②正弦信号是一种基本信号,任何变化规律复杂的信号几乎都可以分解为按正弦规律变化的分量。
2、正弦量的三要素
(1)表示正弦量随时间变化的进程,称之为相位角,它的大小决定该时刻正弦量的值。
(2)当t=0时,相位角,故称φ为初相位角,简称初相位,它表示了正弦量的起点。
(3)同一个正弦量,如果计时起点不同,初相位就不同。
3、同频率正弦量的相位差
(1)设,
,则二者的相位差为
(2)相位差等于初相位之差。
(3)规定相位差的绝对值不能大于180°,由于正弦函数是一个周期函数,相位差的计算结果是能够控制在该范围内的(对超出范围的计算结果进行±360°即可)。
(4)相位差的正负描述:
①φ>0,u超前iφ角,或i滞后uφ角,说明u比i先到达最大值。
②φ<0,u滞后iφ角,或i超前uφ角,说明i比u先到达最大值。
(5)特殊相位关系:
①相位差φ=0,此时u和i二者同相位(简称同相)。
②相位差φ=π/2,说明u领先iπ/2,i落后uπ/2。
③相位差φ=±π,两个正弦量相位差了半个周期,这种情况称u和i反相。
4、周期性电流、电压的有效值
(1)周期性电流、电压的瞬时值随时间而变,为了衡量其平均效果,工程上采用有效值来表示。
(2)有效值也称为均方根值,交流电通过电阻后会产出相应的能量,取交流电的一个周期,在该时间段内如果给该电阻通以一个恒定电流,也能够产出相同的能量,恒定电流的大小就是交流电的电流有效值。
(3)正弦电流、电压的有效值:
(4)工程上说的正弦电压、电流一般指有效值,如设备铭牌额定值、电网的电压等级等,但绝缘水平、耐压值指的是最大值。因此,在考虑电器设备的耐压水平时应按最大值考虑。
三、正弦量的相量表示
1、相量法概述
(1)用相量表示各正弦量,从而分析或寻求各量之间关系的方法就是相量法。
(2)相量法只适用于激励为同频正弦量的非时变线性电路,也就是只用来分析正弦稳态电路。
2、正弦量的具体相量表示
(1)以正弦电流为例,设,根据欧拉公式有
上式中,Re[]是取复数实部的运算。上式将正弦量与复指数函数联系起来,可见用余弦函数表示的正弦量可表示为一复指数函数的实部,该复指数函数的复常数因子包含了正弦量的两个要素——振幅和初相位。在正弦电流电路中,各电流及电压的频率与电源的频率相同,这是已知的,因此正弦电流电路的电流和电压由其振幅和初相位唯一确定,即由其对应的复变函数的负常数因子确定。
(2)将上式中的复常数因子定义为正弦电流的振幅相量,记为
定义正弦电流的有效值相量为
①振幅相量和有效值相量都简称为相量,它们同样满足根号二的关系,根据相量符号是否有下表m可对二者进行区分。同理可定义正弦电压及其它正弦量的相量。
②相量的模表示正弦量的有效值,相量的辐角表示正弦量的初相位。
(3)相量是复数,其运算与一般复数运算相同。每一个相量都对应着一个正弦量,这是其与一般复数的不同之处,因此在相量的符号上加一个小圆点以示区别。
(4)相量也可用复平面的相量图表示,称为正弦量的相量图,利用相量图可直观地看出各正弦量之间的相位关系。不同频率的相量不能画在同一张相量图上,也就是说不同频率的相量之间不能进行运算。
(5)正弦量与它的相量是一一对应的,由正弦量时间表达式可直接写出它的相量,或由相量直接写出与之对应的正弦量的时间函数。
(6)关于相量法的几点说明:
①所谓相量法是用相量这一特殊的复数形式来保释正弦量,从而将正弦量的运算转化为相量(复数)运算的方法,引入相量的目的是为了简化正弦稳态电路的分析计算。
②将正弦量用相量表示实质上是一种数学变换,务必记住正相量和相量只是一种对应关系,两者并不等同。
3、相量法的应用
(1)同频正弦量相加减运算可变成对应相量的相加减运算。(下图所示的是加法运算,减法同理)
(2)正弦量的微分,积分:
四、电路定律的相量形式
1、基尔霍夫定律的相量形式
流入某一节点的所有正弦电流用相量表示时仍满足KCL,任一回路所有支路正弦电压用相量表示时仍满足KVL。
2、电阻元件VCR的相量形式
(1)波形图和相量图:
(2)瞬时功率:瞬时功率以2为周期交变,始终大于零,表明电阻始终吸收功率。
3、电感元件VCR的相量形式
(1)感抗和感纳:
①称为感抗,单位为Ω(欧姆)。
②称为感纳,单位为S(西门子)。
(2)感抗表示限制电流的能力,感抗和频率成正比。
(3)波形图和相量图:
(4)瞬时功率:瞬时功率以2为周期交变,有正有负,一周期内刚好互相抵消。
4、电容元件VCR的相量形式
(1)容抗与容纳:
①称为容抗,单位为Ω(欧姆)。
②称为容纳,单位为S(西门子)。
(2)容抗和频率成反比。
(3)波形图和相量图:
(4)瞬时功率:瞬时功率以2为周期交变,有正有负,一周期内刚好互相抵消。
5、单一参数电路中复数形式的欧姆定律
(1)复数形式的欧姆定律和直流电路中的形式相似。
(2)正弦稳态电路中R、L、C元件电压、电流之间关系的相量形式完全与电阻的欧姆定律相似,因此称它们为相量形式的欧姆定律。