电路分析 第七章(相量法基础)

本文详细阐述了复数的表示形式、运算规则,以及正弦电压和电流的原理,包括正弦量的三要素、相位差和有效值。此外,还介绍了正弦交流电路的特点和相量法在电路定律中的应用,如基尔霍夫定律的相量表示,以及电阻、电感和电容元件的特性及其在欧姆定律中的体现。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

一、复数

1、复数的表现形式

(1)代数形式:(在电路中通常用j来代替i,a为实部,b为虚部)

(2)三角函数形式:

(3)在复平面上表示:

(4)指数形式:

(5)极坐标形式:(|F|为矢径,∠φ为极角)

        极坐标与直角坐标的关系:

2、复数的四则运算

(1)加减运算:

(2)乘法运算:

(3)除法运算:

3、旋转因子

(1)对于复数F\cdot e^{j\theta }=|F|(cos\theta +sin\theta )=|F|\angle \thetaF\cdot e^{j\theta }相当于把F逆时针旋转一个角度\theta,而模不变。故把F\cdot e^{j\theta }称为旋转因子。

(2)几种不同\theta值时的旋转因子:

二、正弦电压和电流

1、正弦量

(1)交流电原理:当线圈在磁场中旋转时,对应不同位置,线圈切割磁力线数不同,所产生的感应电压按正弦规律产生变化,线圈旋转一周,对应的角度变化为2π。

(2)随时间按正弦规律变化的电流或电压等变量称为正弦量。

(3)瞬时值表达式:i(t)=I_{m}cos(\omega t+\psi )

(4)波形图:

(5)正弦量为周期函数,可表示为f(t)=f(t+KT),其中K为正整数,T为周期。

①重复变化一次所需的时间称为周期,单位为s(秒)。

②每秒重复变化的次数称为频率,单位为Hz(赫兹)。

③频率和周期互为倒数。

(6)正弦交流电路:激励和响应均为正弦量的电路(正弦稳态电路)称为正弦交流电路,简称正弦电路或交流电路。

(7)研究正弦电路的意义:

①正弦稳态电路在电力系统和电子技术领域占有十分重要的地位,它容易产生、传送和使用。

②正弦信号是一种基本信号,任何变化规律复杂的信号几乎都可以分解为按正弦规律变化的分量。

2、正弦量的三要素

(1)(\omega t+\phi )表示正弦量随时间变化的进程,称之为相位角,它的大小决定该时刻正弦量的值。

(2)当t=0时,相位角(\omega t+\phi )=\phi,故称φ为初相位角,简称初相位,它表示了正弦量的起点

(3)同一个正弦量,如果计时起点不同,初相位就不同。

3、同频率正弦量的相位差

(1)设u(t)=U_{m}cos(\omega t+\phi_{u})i(t)=I_{m}cos(\omega t+\phi_{i}),则二者的相位差为

(2)相位差等于初相位之差

(3)规定相位差的绝对值不能大于180°,由于正弦函数是一个周期函数,相位差的计算结果是能够控制在该范围内的(对超出范围的计算结果进行±360°即可)。

(4)相位差的正负描述:

①φ>0,u超前iφ角,或i滞后uφ角,说明u比i先到达最大值。

②φ<0,u滞后iφ角,或i超前uφ角,说明i比u先到达最大值。

(5)特殊相位关系:

①相位差φ=0,此时u和i二者同相位(简称同相)。

②相位差φ=π/2,说明u领先iπ/2,i落后uπ/2。

③相位差φ=±π,两个正弦量相位差了半个周期,这种情况称u和i反相。

4、周期性电流、电压的有效值

(1)周期性电流、电压的瞬时值随时间而变,为了衡量其平均效果,工程上采用有效值来表示。

(2)有效值也称为均方根值,交流电通过电阻后会产出相应的能量,取交流电的一个周期,在该时间段内如果给该电阻通以一个恒定电流,也能够产出相同的能量,恒定电流的大小就是交流电的电流有效值。

(3)正弦电流、电压的有效值:

(4)工程上说的正弦电压、电流一般指有效值,如设备铭牌额定值、电网的电压等级等,但绝缘水平、耐压值指的是最大值。因此,在考虑电器设备的耐压水平时应按最大值考虑。

三、正弦量的相量表示

1、相量法概述

(1)用相量表示各正弦量,从而分析或寻求各量之间关系的方法就是相量法。

(2)相量法只适用于激励为同频正弦量的非时变线性电路,也就是只用来分析正弦稳态电路。

2、正弦量的具体相量表示

(1)以正弦电流为例,设i(t)=I_{m}cos(\omega t+\theta _{i}),根据欧拉公式有

        上式中,Re[]是取复数实部的运算。上式将正弦量与复指数函数联系起来,可见用余弦函数表示的正弦量可表示为一复指数函数的实部,该复指数函数的复常数因子I_{m}e^{j\theta _{i}}包含了正弦量的两个要素——振幅和初相位。在正弦电流电路中,各电流及电压的频率与电源的频率相同,这是已知的,因此正弦电流电路的电流和电压由其振幅和初相位唯一确定,即由其对应的复变函数的负常数因子确定。

(2)将上式中的复常数因子定义为正弦电流的振幅相量,记为

        定义正弦电流的有效值相量为

①振幅相量和有效值相量都简称为相量,它们同样满足根号二的关系,根据相量符号是否有下表m可对二者进行区分。同理可定义正弦电压及其它正弦量的相量。

相量的模表示正弦量的有效值,相量的辐角表示正弦量的初相位

(3)相量是复数,其运算与一般复数运算相同。每一个相量都对应着一个正弦量,这是其与一般复数的不同之处,因此在相量的符号上加一个小圆点以示区别。

(4)相量也可用复平面的相量图表示,称为正弦量的相量图,利用相量图可直观地看出各正弦量之间的相位关系。不同频率的相量不能画在同一张相量图上,也就是说不同频率的相量之间不能进行运算。

(5)正弦量与它的相量是一一对应的,由正弦量时间表达式可直接写出它的相量,或由相量直接写出与之对应的正弦量的时间函数。

(6)关于相量法的几点说明:

①所谓相量法是用相量这一特殊的复数形式来保释正弦量,从而将正弦量的运算转化为相量(复数)运算的方法,引入相量的目的是为了简化正弦稳态电路的分析计算。

②将正弦量用相量表示实质上是一种数学变换,务必记住正相量和相量只是一种对应关系,两者并不等同。

3、相量法的应用

(1)同频正弦量相加减运算可变成对应相量的相加减运算。(下图所示的是加法运算,减法同理)

(2)正弦量的微分,积分:

四、电路定律的相量形式

1、基尔霍夫定律的相量形式

流入某一节点的所有正弦电流用相量表示时仍满足KCL,任一回路所有支路正弦电压用相量表示时仍满足KVL。

2、电阻元件VCR的相量形式

(1)波形图和相量图:

(2)瞬时功率:瞬时功率以2\omega为周期交变,始终大于零,表明电阻始终吸收功率。

3、电感元件VCR的相量形式

(1)感抗和感纳:

X_{L}=\omega L=2\pi fL称为感抗,单位为Ω(欧姆)。

B_{L}=-\frac{1}{\omega L}称为感纳,单位为S(西门子)。

(2)感抗表示限制电流的能力,感抗和频率成正比。

(3)波形图和相量图:

(4)瞬时功率:瞬时功率以2\omega为周期交变,有正有负,一周期内刚好互相抵消。

4、电容元件VCR的相量形式

(1)容抗与容纳:

X_{L}=-\frac{1}{\omega C}称为容抗,单位为Ω(欧姆)。

B_{C}=\omega C称为容纳,单位为S(西门子)。

(2)容抗和频率成反比。

(3)波形图和相量图:

(4)瞬时功率:瞬时功率以2\omega为周期交变,有正有负,一周期内刚好互相抵消。

5、单一参数电路中复数形式的欧姆定律

(1)复数形式的欧姆定律和直流电路中的形式相似。

(2)正弦稳态电路中R、L、C元件电压、电流之间关系的相量形式完全与电阻的欧姆定律相似,因此称它们为相量形式的欧姆定律。

评论 12
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Zevalin爱灰灰

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值