电路基础——相量法

相量法

  1. 为什么要使用相量表示?

电路方程是微分方程:

电路的运算(如KCL、KVL方程运算)会涉及到两个正弦量的相加:

如下图所示同频率的正弦量相加仍得到同频率的正弦量,因此只需确定初相位有效值

基于上述分析,因此采用:

  1. 正弦量的相量表示

构造一个复数函数,并用欧拉公式(eix=(cosx+isinx))进行展开:

F(t)函数的实部:

因此不难得出结论:任意一个正弦时间函数都有唯一与其对应的复数函数

F(t)还可以写成:

F(t)包含了三个要素:I\Psi\omega

复常数包含了两个要素:I\Psi

复数的表示形式有以下四种(代数式、指数式、三角函数式、极坐标式):

因为相量的表达形式与复数的极坐标式形式相同,因此相量法的表达形式有:

  • 例题:

  1. 相量图

在复平面上用向量表示相量的图。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

less is more_0930

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值