一、二进制数的算术运算
1、两数绝对值之间的运算
(1)二进制数的加减乘除等算术运算的规则和十进制数类似,只是加法运算的规则为“逢二进一”,减法运算的规则为“借一当二”。
(2)二进制加法:
(3)二进制减法:
(4)二进制乘法:
①多位二进制数的乘法运算可以通过被乘数左移和加法运算实现,即乘数从低位起,每一位数都要依次与被乘数的各位数相乘,所得的积依次左移一位,最后相加求得乘积值。
②二进制数的乘法运算可以通过连续加法运算来实现。
(5)二进制除法:
①被除数从高位开始逐位向低位不断减去除数,够减时商为1,不够减时商为0,不断减下去便可求得商值。
②除法运算也可通过连续的减法运算来实现。
2、原码、反码和补码
(1)在计算机中,数的正和负是用数码表示的,通常在二进制数最高位的前面加一个符号位来表示,符号位后面的数码表示数。带符号的二进制数有原码、反码和补码三种表示方法。
(2)原码:原码由二进制数的原数值部分和符号位组成,因此原码表示法又称为符号—数值表示法。
(3)反码:对于正数,反码和原码相同,为符号位加上原数值;对于负数,反码为符号位加上原数值按位取反(符号位不取反)。
(4)补码:对于正数,补码和原码相同,为符号位加上原数值;对于负数,补码为符号位加上原数值按位取反后(符号位不取反),在最低位加1,即反码加1。
(5)补码的运算规则:
①对补码进行求补码操作,可以得到该数的原码。
②两数补码之和等于两数之和的补码。
③用原码对两个正数进行减法运算时,若将减去一个正数当作加上一个负数,负数用补码来表示,那么就可以将减法运算化为加法运算来实现。
二、加法器
1、半加器
(1)半加的概念:两个 1 位二进制数相加,不考虑低位进位。
(2)半加规则:两个1位二进制数相加一共有三种情况,一是0+0=0,二是0+1=1,三是1+1=10,可见半加结果有两个输出,一个是半加和,一个是半加进位。
(3)真值表和函数式:
(4)逻辑图和符号:
2、全加器
(1)全加的概念:两个同位的加数和来自低位的进位三者相加。
(2)真值表和函数式:
(3)逻辑图和符号:
①用与门、或门和非门实现的逻辑图(对应上面卡诺图圈“1”):
②用与或非门和非门实现(对应上面卡诺图圈“0”,函数式需要取反):
③符号:
(4)集成全加器:
①在一个器件中封装两个上图所示的逻辑电路,即可组成两个功能相同而又相互独立的全加器。下图所示是TTL和CMOS全加器的对应型号和外引线功能端排列图。
②这种双全加器具有独立的全加和与进位输出,既可将每个全加电路单独使用,又可将一个全加器的进位输出端与另一个全加器的进位输入端连接起来,组成2位串行加法器。
3、加法器
(1)实现多位二进制数相加的电路称为加法器。根据进位方式的不同,可分为串行加法器和超前进位加法器。
(2)4位串行进位加法器:
①下图所示是一个4位串行进位加法器,它由四个级联的全加器构成,可实现两个4位二进制数相加。
②这种加法器的优点是电路简单、连接方便;缺点是运算速度不高,每级联一个全加器,传输延迟时间就会增加。
(3)超前进位加法器:
①所谓超前进位加法器,就是在做加法运算时,各位数的进位信号由输入二进制数直接产生的加法器,如下图所示。
②这种加法器的优点是运算速度高,而且扩展方便,至于电路结构,其实也不算复杂。
③上图虚线框中的部分可以集成到芯片上。