信号与系统 第三章(周期信号的傅里叶级数表示)

一、线性时不变系统对复指数信号的响应

1、概述

(1)在研究线性时不变系统时,复指数信号的重要性在于这样一个事实,即一个线性时不变系统对复指数信号的响应也同样是一个复指数信号,不同的只是在幅度上的变化,如下所示,其中H(s)H(z)是一个复振幅因子,一般来说是复变量s或z的函数。

        

(2)一个信号,若系统对该信号的输出响应仅是一个常数(可能是复数)乘以输入,则称该信号为系统的特征函数,而幅度因子称为系统的特征值

2、复指数是线性时不变系统的特征函数

(1)对一个连续时间线性时不变系统,若输入为x(t)=e^{st},单位冲激响应为h(t),则系统对x(t)的响应为y(t)=H(s)e^{st},其中H(s)=\int_{-\infty }^{+\infty }h(\tau )e^{-s\tau }d\tau(是一个复常数)。

(2)对一个离散时间线性时不变系统,若输入为x[n]=z^{n},单位冲激响应为h[n],则系统对x[n]的响应为y[n]=H(z)z^{n},其中H(z)=\sum_{k=-\infty }^{+\infty }h[k]z^{-k}(是一个复常数)。

(3)如果一个线性时不变系统的输入能够表示成复指数的线性组合,那么系统的输出也能够表示成相同复指数信号的线性组合,并且在输出表示式中的每一个系数可以用输入中相应的系数a_{k}分别与特征函数e^{s_{k}t}z_{k}^{n}有关的系统特征值H(s_{k})H(z_{k})相乘求得

二、连续时间周期信号的傅里叶级数表示

1、成谐波关系的复指数信号的线性组合

(1)一个由成谐波关系的复指数线性组合形成的信号x(t)=\sum_{k=-\infty }^{+\infty }a_{k}e^{jk\omega _{0}t}=\sum_{k=-\infty }^{+\infty }a_{k}e^{jk(2\pi /T)t}对T来说是周期的。k=0这一项是一个常数,对应信号的直流分量;k=+1k=-1这两项都有基波频率等于\omega _{0},两项合在一起对应信号的基波分量(或称一次谐波分量);k=+2k=-2这两项都有基波频率等于2\omega _{0},两项合在一起对应信号的二次谐波分量;以此类推,k=+Nk=-N的分量称为N次谐波分量

(2)一个周期信号表示成x(t)=\sum_{k=-\infty }^{+\infty }a_{k}e^{jk\omega _{0}t}=\sum_{k=-\infty }^{+\infty }a_{k}e^{jk(2\pi /T)t},就称为傅里叶级数表示

2、连续时间周期信号傅里叶级数表示的确定

(1)对于x(t)=\sum_{k=-\infty }^{+\infty }a_{k}e^{jk\omega _{0}t}=\sum_{k=-\infty }^{+\infty }a_{k}e^{jk(2\pi /T)t},需要知道每个分量的系数a_{k},它可通过关系式a_{k}=\frac{1}{T}\int_{0}^{T}x(t)e^{-jk\omega _{0}t}dt求得,往往又将其称为傅里叶级数系数或x(t)的频谱系数,用x(t)\overset{\overset{FS}{\leftarrow}}{\rightarrow}a_{k}表示一个周期信号及其傅里叶系数的一对关系。

(2)对于a_{k}=\frac{1}{T}\int_{T}^{}x(t)dt,它是x(t)在一个周期内的平均值

(3)傅里叶级数系数a_{k}往往是个复数,那么它会有自己的幅度\left |a_{k} \right |和相位arga_{k},将每个系数的幅度和相位分别表示在两个谱面上,即可得到幅度谱和相位谱,幅度谱左右对称,相位谱关于原点对称。

3、傅里叶级数的形式

(1)实际上,实周期信号总是可以写成三角函数形式的傅里叶级数和复指数形式的傅里叶级数,二者可借助欧拉公式互相转换。a_{k}一般是复数,可以写成极坐标形式a_{k}=A_{k}e^{j\theta _{k}},则三角函数形式的傅里叶级数可表示为x(t)=a_{0}+2\sum_{k=1}^{+\infty }A_{k}cos(k\omega _{0}t+\theta _{k})

(2)复指数形式的傅里叶级数转三角函数形式的傅里叶级数举例:

(3)三角函数形式的傅里叶级数转复指数形式的傅里叶级数举例:

4、经典周期方波

三、连续时间傅里叶级数性质

1、线性性质

        令x(t)y(t)为两个周期信号,周期为T,它们的傅里叶级数系数分别为a_{k}b_{k},则有

2、时移性质

(1)周期信号在时间上的移位,对应于相位谱的变化,幅度谱保持不变。

(2)周期信号x(t)的傅里叶级数系数为a_{k},当x(t)以某个t_{0}时移时,该信号的周期T保持不变,所得到的信号x(t-t_{0})的傅里叶级数系数为

3、时间反转性质

(1)施加于连续时间信号上的时间反转会导致其对应的傅里叶级数系数序列的时间反转。

(2)周期信号x(t)的傅里叶级数系数为a_{k},根据时间反转性质,有

(3)若x(t)为偶函数,即x(t)=x(-t),则傅里叶级数系数也为偶函数,即a_{k}=a_{-k};若x(t)为奇函数,即-x(t)=x(-t),则傅里叶级数系数也为奇函数,即-a_{k}=a_{-k}

4、时域尺度变换性质

(1)这种运算不会改变傅里叶级数系数,但会改变被变换信号的周期,也就是说基波频率会发生变化,傅里叶级数的表示也会随之改变。

(2)周期信号x(t)的傅里叶级数系数为a_{k},有x(t)=\sum_{k=-\infty }^{+\infty }a_{k}e^{jk\omega _{0}t}=\sum_{k=-\infty }^{+\infty }a_{k}e^{jk(2\pi /T)t},对x(t)做时域尺度变换,将其压缩至原本的1/\alpha,有x(\alpha t)=\sum_{k=-\infty }^{+\infty }a_{k}e^{jk\alpha\omega _{0}t}=\sum_{k=-\infty }^{+\infty }a_{k}e^{jk(2\alpha\pi /T)t}

5、相乘性质

        令x(t)y(t)为两个周期信号,周期为T,它们的傅里叶级数系数分别为a_{k}b_{k},则有

6、共轭与共轭对称性质

(1)周期信号x(t)的傅里叶级数系数为a_{k},取x(t)的复数共轭,在它的傅里叶级数上就会有复数共轭并进行时间反转的结果,即

(2)当x(t)为实函数时,傅里叶级数系数一定是共轭对称的,即a_{k}=a_{-k}^{*},另外a_{0}一定为实数,且有\left |a_{k} \right |=\left |a_{-k}^{*} \right |

(3)若x(t)为实偶函数,那么它的傅里叶级数系数也为实偶函数;若x(t)为实奇函数,那么它的傅里叶级数系数为纯虚奇函数。

7、连续时间周期信号的帕塞瓦尔定理

(1)帕塞瓦尔定理指出,一个周期信号的总平均功率等于它的全部谐波分量的平均功率之和

(2)连续时间周期信号的帕塞瓦尔定理是\frac{1}{T}\int_{T}^{}\left | x(t) \right |^{2}dt=\sum_{k=-\infty }^{+\infty }\left | a_{k} \right |^{2},其中a_{k}是周期信号x(t)的傅里叶级数系数,T是该信号的周期。

8、连续时间傅里叶级数性质列表

9、举例

(1)在求取一个已知信号的傅里叶级数时,可以借助上表的性质,绕过一些繁杂的代数运算

(2)例1:

(3)例2:

四、离散时间周期信号的傅里叶级数表示

1、成谐波关系的复指数信号的线性组合

(1)一个由成谐波关系的复指数线性组合\phi _{k}[n]=e^{jk\omega _{0}n}=e^{jk(2\pi /N)n}(k=0,\pm 1,\pm 2,...)形成的信号x[n]=\sum_{k}^{}a_{k}\phi _{k}[n]对N来说是周期的。

(2)序列\phi _{k}[n]只在k的N个连续值的范围内是不同的(这是由于在频率上相差2π的整数倍的离散时间复指数信号都是一样的,即\phi _{k}[n]=\phi _{k}[n+rN]),因此求和仅需要包括N项,对k求和是当k在N个相继整数(n,n+1,n+2,…,这样的一堆数称为相继整数)的区间上变化时从任意k值开始进行的,为此将求和限表示成k=\left \langle N \right \rangle,有

2、离散时间周期信号傅里叶级数表示的确定

(1)对于x[n]=\sum_{k=\left \langle N \right \rangle}^{}a_{k}\phi _{k}[n],需要知道每个分量的系数a_{k},它可通过关系式a_{k}=\frac{1}{N}\sum_{k=\left \langle n \right \rangle}^{}x[n]e^{-jk\omega _{0}n}求得,往往又将其称为傅里叶级数系数或x[n]的频谱系数,用x[n]\overset{\overset{FS}{\leftarrow}}{\rightarrow}a_{k}表示一个周期信号及其傅里叶系数的一对关系。

(2)傅里叶级数系数的公式表明x[n]可分解成N个成谐波关系的复指数信号之和,结合\phi _{k}[n]=\phi _{k}[n+rN],可推出a_{k}=a_{k+N}

3、傅里叶级数的形式

(1)实际上,实周期信号总是可以写成三角函数形式的傅里叶级数和复指数形式的傅里叶级数

(2)三角函数形式的傅里叶级数转复指数形式的傅里叶级数举例:

4、经典周期方波

五、离散时间傅里叶级数性质

1、离散时间傅里叶级数性质列表

2、举例

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Zevalin爱灰灰

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值