NumPy(细节)知识点/坑汇总

本文详述了在使用 NumPy 过程中的一些关键知识点和常见问题,包括方法的区别、切片保持维度的方法,以及 NumPy 和 PyTorch 在默认数据类型上的差异。文章提醒在处理 numpy.ndarray 时要注意内存管理和数据类型转换,以优化性能。
摘要由CSDN通过智能技术生成

  持续更新中,先占个坑 : )

  该篇文章记录本人在科研与工程中运用 NumPy 时遇到的一些(细节)知识点/坑。很多内容可能平时不太会注意,也可能在功能实现上没有任何影响,但是出于性能(内存利用与时间)的考虑,这些内容应该值得注意。

以下内容均默认已导入 NumPy 和 PyTorch:

import numpy as np

一、方法 np.arraynp.asarray

  当传入参数均为列表(list)时,两者没有区别,都会开辟一个新的内存空间,产生一个新的 numpy.ndarray。

>>> a = [0, 1, 2, 3]
>>> a
[0, 1, 2, 3]
>>> b = np.array(a)
>>> b
array([0, 1, 2, 3])
>>> c = np.asarray(a)
>>> c
array([0, 1, 2, 3])

  当出入的参数是 numpy.ndarray 数组时,np.array 开辟新的内存空间,返回新的 NumPy 数组;np.asarray 原封不动地返回传入的 numpy.ndarray(的引用)。

>>> a = np.array([0, 1, 2, 3])
>>> a
array([0, 
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值