论文研读之《RandLaNet: Efficient Semantic Segmentation of Large-Scale Point Clouds》

本文介绍了RandLaNet,一种用于大场景点云语义分割的快速模型。研究发现随机采样在处理效率上优于其他采样方法,但可能丢失信息。为了解决这个问题,提出了局部特征采样器,包括LocSE和Attentive Pooling,以减少信息损失。通过局部特征编码、下采样和残差模块,该模型实现了高效且准确的点云处理。论文详细比较了不同的采样方法,并提供了实现代码链接。
摘要由CSDN通过智能技术生成

论文:https://arxiv.org/pdf/1911.11236.pdf

代码:https://github.com/QingyongHu/RandLA-Net

应用领域:大场景(如室外)的点云语义分割

数据集:

  1. Semantic3D
  2. SemanticKITTI
  3. S3DIS

主要贡献:提出更快的点云语义分割模型。

  1. 对比现有的采样方法,发现随机采样最好。
  2. 为了减小随机采样丢失的信息,提出局部特征采样器,包括 Local Spatial Encoding (LocSE) 和 Attentive Pooling。

  总的来说,这篇论文讲述详实,内容容易理解,简单而又高效。

采样

  作者对比了现有的几种采样方法,包括 PointNet、PointNet++ 等中使用的最远点采样(Farthest Point Sampling,FPS),其计算复杂度为 O ( N 2 ) O(N^{2}) O(N2),处理 N   1 0 6 N ~ 10^{6} N 106 点云数据需要约 200 秒;逆密度采样(Inverse Density Importance Sampling,IDIS),其计算复杂度为 O ( N ) O(N) O(N),处理等量点云需要约 10 秒;随机采样的计算复杂度为 O ( 1 ) O(1) O(1),与数据量无关,处理等量点云需要约 0.004 秒;其他基于学习的采样方法或花费更多时间,或有更大的内存需求。

局部特征聚集

  随机采样会丢失部分有用的信息,所以在丢失这些信息之前,先把信息收集起来。这部分可分为三步:局部空间编码(Local Spatial Encoding,LocSe)、下采样(Attentive Pooling) 和 残差模块。如图1所示。
在这里插入图片描述

局部特征编码

  输入数据为 N × ( 3 + d ) N \times (3+d) N×(3+d) 的点云数据,其中 3 3 3 为点的空间坐标 ( x , y , z ) (x,y,z) (x,y,z) d d

评论 5
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值